Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
import pytest | |
from itertools import product | |
from ding.model.template import DiscreteBC, ContinuousBC | |
from ding.torch_utils import is_differentiable | |
from ding.utils import squeeze | |
B = 4 | |
T = 6 | |
embedding_size = 32 | |
action_shape_args = [(6, ), [ | |
1, | |
]] | |
args = list(product(*[action_shape_args, ['regression', 'reparameterization']])) | |
class TestContinuousBC: | |
def test_continuous_bc(self, action_shape, action_space): | |
N = 32 | |
inputs = {'obs': torch.randn(B, N), 'action': torch.randn(B, squeeze(action_shape))} | |
model = ContinuousBC( | |
obs_shape=(N, ), | |
action_shape=action_shape, | |
action_space=action_space, | |
actor_head_hidden_size=embedding_size, | |
) | |
# compute_action | |
print(model) | |
if action_space == 'regression': | |
action = model(inputs['obs'])['action'] | |
if squeeze(action_shape) == 1: | |
assert action.shape == (B, ) | |
else: | |
assert action.shape == (B, squeeze(action_shape)) | |
assert action.eq(action.clamp(-1, 1)).all() | |
is_differentiable(action.sum(), model.actor) | |
elif action_space == 'reparameterization': | |
(mu, sigma) = model(inputs['obs'])['logit'] | |
assert mu.shape == (B, *action_shape) | |
assert sigma.shape == (B, *action_shape) | |
is_differentiable(mu.sum() + sigma.sum(), model.actor) | |
T, B = 3, 4 | |
obs_shape = [4, (8, ), (4, 64, 64)] | |
act_shape = [3, (6, ), [2, 3, 6]] | |
args = list(product(*[obs_shape, act_shape])) | |
class TestDiscreteBC: | |
def output_check(self, model, outputs): | |
if isinstance(outputs, torch.Tensor): | |
loss = outputs.sum() | |
elif isinstance(outputs, list): | |
loss = sum([t.sum() for t in outputs]) | |
elif isinstance(outputs, dict): | |
loss = sum([v.sum() for v in outputs.values()]) | |
is_differentiable(loss, model) | |
def test_discrete_bc(self, obs_shape, act_shape): | |
if isinstance(obs_shape, int): | |
inputs = torch.randn(B, obs_shape) | |
else: | |
inputs = torch.randn(B, *obs_shape) | |
model = DiscreteBC(obs_shape, act_shape) | |
outputs = model(inputs) | |
assert isinstance(outputs, dict) | |
if isinstance(act_shape, int): | |
assert outputs['logit'].shape == (B, act_shape) | |
elif len(act_shape) == 1: | |
assert outputs['logit'].shape == (B, *act_shape) | |
else: | |
for i, s in enumerate(act_shape): | |
assert outputs['logit'][i].shape == (B, s) | |
self.output_check(model, outputs['logit']) | |