Spaces:
Sleeping
Sleeping
import pytest | |
from itertools import product | |
import torch | |
from ding.model.template import BCQ | |
from ding.torch_utils import is_differentiable | |
B = 4 | |
obs_shape = [4, (8, )] | |
act_shape = [3, (6, )] | |
args = list(product(*[obs_shape, act_shape])) | |
class TestBCQ: | |
def output_check(self, model, outputs): | |
if isinstance(outputs, torch.Tensor): | |
loss = outputs.sum() | |
elif isinstance(outputs, dict): | |
loss = sum([v.sum() for v in outputs.values()]) | |
is_differentiable(loss, model) | |
def test_BCQ(self, obs_shape, act_shape): | |
if isinstance(obs_shape, int): | |
inputs_obs = torch.randn(B, obs_shape) | |
else: | |
inputs_obs = torch.randn(B, *obs_shape) | |
if isinstance(act_shape, int): | |
inputs_act = torch.randn(B, act_shape) | |
else: | |
inputs_act = torch.randn(B, *act_shape) | |
inputs = {'obs': inputs_obs, 'action': inputs_act} | |
model = BCQ(obs_shape, act_shape) | |
outputs_c = model(inputs, mode='compute_critic') | |
assert isinstance(outputs_c, dict) | |
if isinstance(act_shape, int): | |
assert torch.stack(outputs_c['q_value']).shape == (2, B) | |
else: | |
assert torch.stack(outputs_c['q_value']).shape == (2, B) | |
self.output_check(model.critic, torch.stack(outputs_c['q_value'])) | |
outputs_a = model(inputs, mode='compute_actor') | |
assert isinstance(outputs_a, dict) | |
if isinstance(act_shape, int): | |
assert outputs_a['action'].shape == (B, act_shape) | |
elif len(act_shape) == 1: | |
assert outputs_a['action'].shape == (B, *act_shape) | |
self.output_check(model.actor, outputs_a) | |
outputs_vae = model(inputs, mode='compute_vae') | |
assert isinstance(outputs_vae, dict) | |
if isinstance(act_shape, int): | |
assert outputs_vae['recons_action'].shape == (B, act_shape) | |
assert outputs_vae['mu'].shape == (B, act_shape * 2) | |
assert outputs_vae['log_var'].shape == (B, act_shape * 2) | |
assert outputs_vae['z'].shape == (B, act_shape * 2) | |
elif len(act_shape) == 1: | |
assert outputs_vae['recons_action'].shape == (B, *act_shape) | |
assert outputs_vae['mu'].shape == (B, act_shape[0] * 2) | |
assert outputs_vae['log_var'].shape == (B, act_shape[0] * 2) | |
assert outputs_vae['z'].shape == (B, act_shape[0] * 2) | |
if isinstance(obs_shape, int): | |
assert outputs_vae['prediction_residual'].shape == (B, obs_shape) | |
else: | |
assert outputs_vae['prediction_residual'].shape == (B, *obs_shape) | |
outputs_eval = model(inputs, mode='compute_eval') | |
assert isinstance(outputs_eval, dict) | |
assert isinstance(outputs_eval, dict) | |
if isinstance(act_shape, int): | |
assert outputs_eval['action'].shape == (B, act_shape) | |
elif len(act_shape) == 1: | |
assert outputs_eval['action'].shape == (B, *act_shape) | |