Spaces:
Sleeping
Sleeping
import pytest | |
import torch | |
from ding.torch_utils import is_differentiable | |
from ding.model.template import CollaQ | |
def test_collaQ(): | |
use_mixer = [True, False] | |
agent_num, bs, T = 4, 6, 8 | |
obs_dim, obs_alone_dim, global_obs_dim, action_dim = 32, 24, 32 * 4, 9 | |
self_feature_range = [8, 10] | |
allay_feature_range = [10, 16] | |
embedding_dim = 64 | |
for mix in use_mixer: | |
collaQ_model = CollaQ( | |
agent_num, | |
obs_dim, | |
obs_alone_dim, | |
global_obs_dim, | |
action_dim, [128, embedding_dim], | |
True, | |
self_feature_range, | |
allay_feature_range, | |
32, | |
mix, | |
activation=torch.nn.Tanh() | |
) | |
print(collaQ_model) | |
data = { | |
'obs': { | |
'agent_state': torch.randn(T, bs, agent_num, obs_dim), | |
'agent_alone_state': torch.randn(T, bs, agent_num, obs_alone_dim), | |
'agent_alone_padding_state': torch.randn(T, bs, agent_num, obs_dim), | |
'global_state': torch.randn(T, bs, global_obs_dim), | |
'action_mask': torch.randint(0, 2, size=(T, bs, agent_num, action_dim)) | |
}, | |
'prev_state': [[[None for _ in range(agent_num)] for _ in range(3)] for _ in range(bs)], | |
'action': torch.randint(0, action_dim, size=(T, bs, agent_num)) | |
} | |
output = collaQ_model(data, single_step=False) | |
assert set(output.keys()) == set(['total_q', 'logit', 'next_state', 'action_mask', 'agent_colla_alone_q']) | |
assert output['total_q'].shape == (T, bs) | |
assert output['logit'].shape == (T, bs, agent_num, action_dim) | |
assert len(output['next_state']) == bs and all([len(n) == 3 for n in output['next_state']]) and all( | |
[len(q) == agent_num for n in output['next_state'] for q in n] | |
) | |
print(output['next_state'][0][0][0]['h'].shape) | |
# data['prev_state'] = output['next_state'] | |
loss = output['total_q'].sum() | |
is_differentiable(loss, collaQ_model) | |
data.pop('action') | |
output = collaQ_model(data, single_step=False) | |