Spaces:
Sleeping
Sleeping
import pytest | |
from itertools import product | |
import torch | |
from ding.model.template import DQN, RainbowDQN, QRDQN, IQN, FQF, DRQN, C51DQN, BDQ, GTrXLDQN | |
from ding.torch_utils import is_differentiable | |
T, B = 3, 4 | |
obs_shape = [4, (8, ), (4, 64, 64)] | |
act_shape = [3, (6, ), [2, 3, 6]] | |
args = list(product(*[obs_shape, act_shape])) | |
class TestQLearning: | |
def output_check(self, model, outputs): | |
if isinstance(outputs, torch.Tensor): | |
loss = outputs.sum() | |
elif isinstance(outputs, list): | |
loss = sum([t.sum() for t in outputs]) | |
elif isinstance(outputs, dict): | |
loss = sum([v.sum() for v in outputs.values()]) | |
is_differentiable(loss, model) | |
def test_dqn(self, obs_shape, act_shape): | |
if isinstance(obs_shape, int): | |
inputs = torch.randn(B, obs_shape) | |
else: | |
inputs = torch.randn(B, *obs_shape) | |
model = DQN(obs_shape, act_shape) | |
outputs = model(inputs) | |
assert isinstance(outputs, dict) | |
if isinstance(act_shape, int): | |
assert outputs['logit'].shape == (B, act_shape) | |
elif len(act_shape) == 1: | |
assert outputs['logit'].shape == (B, *act_shape) | |
else: | |
for i, s in enumerate(act_shape): | |
assert outputs['logit'][i].shape == (B, s) | |
self.output_check(model, outputs['logit']) | |
def test_bdq(self, obs_shape, act_shape): | |
if isinstance(obs_shape, int): | |
inputs = torch.randn(B, obs_shape) | |
else: | |
inputs = torch.randn(B, *obs_shape) | |
if not isinstance(act_shape, int) and len(act_shape) > 1: | |
return | |
num_branches = act_shape | |
for action_bins_per_branch in range(1, 10): | |
model = BDQ(obs_shape, num_branches, action_bins_per_branch) | |
outputs = model(inputs) | |
assert isinstance(outputs, dict) | |
if isinstance(act_shape, int): | |
assert outputs['logit'].shape == (B, act_shape, action_bins_per_branch) | |
else: | |
assert outputs['logit'].shape == (B, *act_shape, action_bins_per_branch) | |
self.output_check(model, outputs['logit']) | |
def test_rainbowdqn(self, obs_shape, act_shape): | |
if isinstance(obs_shape, int): | |
inputs = torch.randn(B, obs_shape) | |
else: | |
inputs = torch.randn(B, *obs_shape) | |
model = RainbowDQN(obs_shape, act_shape, n_atom=41) | |
outputs = model(inputs) | |
assert isinstance(outputs, dict) | |
if isinstance(act_shape, int): | |
assert outputs['logit'].shape == (B, act_shape) | |
assert outputs['distribution'].shape == (B, act_shape, 41) | |
elif len(act_shape) == 1: | |
assert outputs['logit'].shape == (B, *act_shape) | |
assert outputs['distribution'].shape == (B, *act_shape, 41) | |
else: | |
for i, s in enumerate(act_shape): | |
assert outputs['logit'][i].shape == (B, s) | |
assert outputs['distribution'][i].shape == (B, s, 41) | |
self.output_check(model, outputs['logit']) | |
def test_c51(self, obs_shape, act_shape): | |
if isinstance(obs_shape, int): | |
inputs = torch.randn(B, obs_shape) | |
else: | |
inputs = torch.randn(B, *obs_shape) | |
model = C51DQN(obs_shape, act_shape, n_atom=41) | |
outputs = model(inputs) | |
assert isinstance(outputs, dict) | |
if isinstance(act_shape, int): | |
assert outputs['logit'].shape == (B, act_shape) | |
assert outputs['distribution'].shape == (B, act_shape, 41) | |
elif len(act_shape) == 1: | |
assert outputs['logit'].shape == (B, *act_shape) | |
assert outputs['distribution'].shape == (B, *act_shape, 41) | |
else: | |
for i, s in enumerate(act_shape): | |
assert outputs['logit'][i].shape == (B, s) | |
assert outputs['distribution'][i].shape == (B, s, 41) | |
self.output_check(model, outputs['logit']) | |
def test_iqn(self, obs_shape, act_shape): | |
if isinstance(obs_shape, int): | |
inputs = torch.randn(B, obs_shape) | |
else: | |
inputs = torch.randn(B, *obs_shape) | |
num_quantiles = 48 | |
model = IQN(obs_shape, act_shape, num_quantiles=num_quantiles, quantile_embedding_size=64) | |
outputs = model(inputs) | |
print(model) | |
assert isinstance(outputs, dict) | |
if isinstance(act_shape, int): | |
assert outputs['logit'].shape == (B, act_shape) | |
assert outputs['q'].shape == (num_quantiles, B, act_shape) | |
assert outputs['quantiles'].shape == (B * num_quantiles, 1) | |
elif len(act_shape) == 1: | |
assert outputs['logit'].shape == (B, *act_shape) | |
assert outputs['q'].shape == (num_quantiles, B, *act_shape) | |
assert outputs['quantiles'].shape == (B * num_quantiles, 1) | |
else: | |
for i, s in enumerate(act_shape): | |
assert outputs['logit'][i].shape == (B, s) | |
assert outputs['q'][i].shape == (num_quantiles, B, s) | |
assert outputs['quantiles'][i].shape == (B * num_quantiles, 1) | |
self.output_check(model, outputs['logit']) | |
def test_fqf(self, obs_shape, act_shape): | |
if isinstance(obs_shape, int): | |
inputs = torch.randn(B, obs_shape) | |
else: | |
inputs = torch.randn(B, *obs_shape) | |
num_quantiles = 48 | |
model = FQF(obs_shape, act_shape, num_quantiles=num_quantiles, quantile_embedding_size=64) | |
outputs = model(inputs) | |
print(model) | |
assert isinstance(outputs, dict) | |
if isinstance(act_shape, int): | |
assert outputs['logit'].shape == (B, act_shape) | |
assert outputs['q'].shape == (B, num_quantiles, act_shape) | |
assert outputs['quantiles'].shape == (B, num_quantiles + 1) | |
assert outputs['quantiles_hats'].shape == (B, num_quantiles) | |
assert outputs['q_tau_i'].shape == (B, num_quantiles - 1, act_shape) | |
all_quantiles_proposal = model.head.quantiles_proposal | |
all_fqf_fc = model.head.fqf_fc | |
elif len(act_shape) == 1: | |
assert outputs['logit'].shape == (B, *act_shape) | |
assert outputs['q'].shape == (B, num_quantiles, *act_shape) | |
assert outputs['quantiles'].shape == (B, num_quantiles + 1) | |
assert outputs['quantiles_hats'].shape == (B, num_quantiles) | |
assert outputs['q_tau_i'].shape == (B, num_quantiles - 1, *act_shape) | |
all_quantiles_proposal = model.head.quantiles_proposal | |
all_fqf_fc = model.head.fqf_fc | |
else: | |
for i, s in enumerate(act_shape): | |
assert outputs['logit'][i].shape == (B, s) | |
assert outputs['q'][i].shape == (B, num_quantiles, s) | |
assert outputs['quantiles'][i].shape == (B, num_quantiles + 1) | |
assert outputs['quantiles_hats'][i].shape == (B, num_quantiles) | |
assert outputs['q_tau_i'][i].shape == (B, num_quantiles - 1, s) | |
all_quantiles_proposal = [h.quantiles_proposal for h in model.head.pred] | |
all_fqf_fc = [h.fqf_fc for h in model.head.pred] | |
self.output_check(all_quantiles_proposal, outputs['quantiles']) | |
for p in model.parameters(): | |
p.grad = None | |
self.output_check(all_fqf_fc, outputs['q']) | |
def test_qrdqn(self, obs_shape, act_shape): | |
if isinstance(obs_shape, int): | |
inputs = torch.randn(B, obs_shape) | |
else: | |
inputs = torch.randn(B, *obs_shape) | |
model = QRDQN(obs_shape, act_shape, num_quantiles=32) | |
outputs = model(inputs) | |
assert isinstance(outputs, dict) | |
if isinstance(act_shape, int): | |
assert outputs['logit'].shape == (B, act_shape) | |
assert outputs['q'].shape == (B, act_shape, 32) | |
assert outputs['tau'].shape == (B, 32, 1) | |
elif len(act_shape) == 1: | |
assert outputs['logit'].shape == (B, *act_shape) | |
assert outputs['q'].shape == (B, *act_shape, 32) | |
assert outputs['tau'].shape == (B, 32, 1) | |
else: | |
for i, s in enumerate(act_shape): | |
assert outputs['logit'][i].shape == (B, s) | |
assert outputs['q'][i].shape == (B, s, 32) | |
assert outputs['tau'][i].shape == (B, 32, 1) | |
self.output_check(model, outputs['logit']) | |
def test_drqn(self, obs_shape, act_shape): | |
if isinstance(obs_shape, int): | |
inputs = torch.randn(T, B, obs_shape) | |
else: | |
inputs = torch.randn(T, B, *obs_shape) | |
# (num_layer * num_direction, 1, head_hidden_size) | |
prev_state = [{k: torch.randn(1, 1, 64) for k in ['h', 'c']} for _ in range(B)] | |
model = DRQN(obs_shape, act_shape) | |
outputs = model({'obs': inputs, 'prev_state': prev_state}, inference=False) | |
assert isinstance(outputs, dict) | |
if isinstance(act_shape, int): | |
assert outputs['logit'].shape == (T, B, act_shape) | |
elif len(act_shape) == 1: | |
assert outputs['logit'].shape == (T, B, *act_shape) | |
else: | |
for i, s in enumerate(act_shape): | |
assert outputs['logit'][i].shape == (T, B, s) | |
assert len(outputs['next_state']) == B | |
assert all([len(t) == 2 for t in outputs['next_state']]) | |
assert all([t['h'].shape == (1, 1, 64) for t in outputs['next_state']]) | |
self.output_check(model, outputs['logit']) | |
def test_drqn_inference(self, obs_shape, act_shape): | |
if isinstance(obs_shape, int): | |
inputs = torch.randn(B, obs_shape) | |
else: | |
inputs = torch.randn(B, *obs_shape) | |
# (num_layer * num_direction, 1, head_hidden_size) | |
prev_state = [{k: torch.randn(1, 1, 64) for k in ['h', 'c']} for _ in range(B)] | |
model = DRQN(obs_shape, act_shape) | |
outputs = model({'obs': inputs, 'prev_state': prev_state}, inference=True) | |
assert isinstance(outputs, dict) | |
if isinstance(act_shape, int): | |
assert outputs['logit'].shape == (B, act_shape) | |
elif len(act_shape) == 1: | |
assert outputs['logit'].shape == (B, *act_shape) | |
else: | |
for i, s in enumerate(act_shape): | |
assert outputs['logit'][i].shape == (B, s) | |
assert len(outputs['next_state']) == B | |
assert all([len(t) == 2 for t in outputs['next_state']]) | |
assert all([t['h'].shape == (1, 1, 64) for t in outputs['next_state']]) | |
self.output_check(model, outputs['logit']) | |
def test_drqn_res_link(self, obs_shape, act_shape): | |
if isinstance(obs_shape, int): | |
inputs = torch.randn(T, B, obs_shape) | |
else: | |
inputs = torch.randn(T, B, *obs_shape) | |
# (num_layer * num_direction, 1, head_hidden_size) | |
prev_state = [{k: torch.randn(1, 1, 64) for k in ['h', 'c']} for _ in range(B)] | |
model = DRQN(obs_shape, act_shape, res_link=True) | |
outputs = model({'obs': inputs, 'prev_state': prev_state}, inference=False) | |
assert isinstance(outputs, dict) | |
if isinstance(act_shape, int): | |
assert outputs['logit'].shape == (T, B, act_shape) | |
elif len(act_shape) == 1: | |
assert outputs['logit'].shape == (T, B, *act_shape) | |
else: | |
for i, s in enumerate(act_shape): | |
assert outputs['logit'][i].shape == (T, B, s) | |
assert len(outputs['next_state']) == B | |
assert all([len(t) == 2 for t in outputs['next_state']]) | |
assert all([t['h'].shape == (1, 1, 64) for t in outputs['next_state']]) | |
self.output_check(model, outputs['logit']) | |
def test_drqn_inference_res_link(self, obs_shape, act_shape): | |
if isinstance(obs_shape, int): | |
inputs = torch.randn(B, obs_shape) | |
else: | |
inputs = torch.randn(B, *obs_shape) | |
# (num_layer * num_direction, 1, head_hidden_size) | |
prev_state = [{k: torch.randn(1, 1, 64) for k in ['h', 'c']} for _ in range(B)] | |
model = DRQN(obs_shape, act_shape, res_link=True) | |
outputs = model({'obs': inputs, 'prev_state': prev_state}, inference=True) | |
assert isinstance(outputs, dict) | |
if isinstance(act_shape, int): | |
assert outputs['logit'].shape == (B, act_shape) | |
elif len(act_shape) == 1: | |
assert outputs['logit'].shape == (B, *act_shape) | |
else: | |
for i, s in enumerate(act_shape): | |
assert outputs['logit'][i].shape == (B, s) | |
assert len(outputs['next_state']) == B | |
assert all([len(t) == 2 for t in outputs['next_state']]) | |
assert all([t['h'].shape == (1, 1, 64) for t in outputs['next_state']]) | |
self.output_check(model, outputs['logit']) | |
def test_GTrXLDQN(self): | |
obs_dim, seq_len, bs, action_dim = [4, 64, 64], 64, 32, 4 | |
obs = torch.rand(seq_len, bs, *obs_dim) | |
model = GTrXLDQN(obs_dim, action_dim, encoder_hidden_size_list=[16, 16, 16]) | |
outputs = model(obs) | |
assert isinstance(outputs, dict) | |