Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
import pytest | |
from itertools import product | |
from ding.model.template import ContinuousQAC, DiscreteMAQAC, DiscreteQAC | |
from ding.torch_utils import is_differentiable | |
from ding.utils import squeeze | |
B = 4 | |
T = 6 | |
embedding_size = 32 | |
action_shape_args = [(6, ), [ | |
1, | |
]] | |
args = list(product(*[action_shape_args, [True, False], ['regression', 'reparameterization']])) | |
class TestContinuousQAC: | |
def test_fcqac(self, action_shape, twin, action_space): | |
N = 32 | |
inputs = {'obs': torch.randn(B, N), 'action': torch.randn(B, squeeze(action_shape))} | |
model = ContinuousQAC( | |
obs_shape=(N, ), | |
action_shape=action_shape, | |
action_space=action_space, | |
critic_head_hidden_size=embedding_size, | |
actor_head_hidden_size=embedding_size, | |
twin_critic=twin, | |
) | |
# compute_q | |
q = model(inputs, mode='compute_critic')['q_value'] | |
if twin: | |
is_differentiable(q[0].sum(), model.critic[1][0]) | |
is_differentiable(q[1].sum(), model.critic[1][1]) | |
else: | |
is_differentiable(q.sum(), model.critic) | |
# compute_action | |
print(model) | |
if action_space == 'regression': | |
action = model(inputs['obs'], mode='compute_actor')['action'] | |
if squeeze(action_shape) == 1: | |
assert action.shape == (B, ) | |
else: | |
assert action.shape == (B, squeeze(action_shape)) | |
assert action.eq(action.clamp(-1, 1)).all() | |
is_differentiable(action.sum(), model.actor) | |
elif action_space == 'reparameterization': | |
(mu, sigma) = model(inputs['obs'], mode='compute_actor')['logit'] | |
assert mu.shape == (B, *action_shape) | |
assert sigma.shape == (B, *action_shape) | |
is_differentiable(mu.sum() + sigma.sum(), model.actor) | |
args = list(product(*[[True, False], [(13, ), [4, 84, 84]]])) | |
class TestDiscreteQAC: | |
def test_discreteqac(self, twin, obs_shape): | |
action_shape = 6 | |
inputs = torch.randn(B, *obs_shape) | |
model = DiscreteQAC( | |
obs_shape=obs_shape, | |
action_shape=action_shape, | |
twin_critic=twin, | |
encoder_hidden_size_list=[32, 32, 64] if len(obs_shape) > 1 else None, | |
) | |
# compute_critic | |
q = model(inputs, mode='compute_critic')['q_value'] | |
if twin: | |
is_differentiable(q[0].sum(), model.critic[1][0]) | |
# is_differentiable(q[1].sum(), model.critic[1][1]) # backward encoder twice | |
assert q[0].shape == (B, action_shape) | |
assert q[1].shape == (B, action_shape) | |
else: | |
is_differentiable(q.sum(), model.critic[1]) | |
assert q.shape == (B, action_shape) | |
# compute_actor | |
print(model) | |
logit = model(inputs, mode='compute_actor')['logit'] | |
assert logit.shape == (B, action_shape) | |
is_differentiable(logit.sum(), model.actor) | |
B = 4 | |
embedding_size = 64 | |
action_shape_args = [(6, ), 1] | |
args = list(product(*[action_shape_args, [True, False], [True, False]])) | |
class TestContinuousQACPixel: | |
def test_qacpixel(self, action_shape, twin, share_encoder): | |
inputs = {'obs': torch.randn(B, 3, 84, 84), 'action': torch.randn(B, squeeze(action_shape))} | |
model = ContinuousQAC( | |
obs_shape=(3, 84, 84), | |
action_shape=action_shape, | |
action_space='reparameterization', | |
critic_head_hidden_size=embedding_size, | |
actor_head_hidden_size=embedding_size, | |
twin_critic=twin, | |
share_encoder=share_encoder, | |
encoder_hidden_size_list=[32, 32, 64], | |
) | |
# compute_q | |
q = model(inputs, mode='compute_critic')['q_value'] | |
if twin: | |
q = torch.min(q[0], q[1]) | |
is_differentiable(q.sum(), model.critic) | |
# compute_action | |
print(model) | |
(mu, sigma) = model(inputs['obs'], mode='compute_actor')['logit'] | |
action_shape = squeeze(action_shape) | |
assert mu.shape == (B, action_shape) | |
assert sigma.shape == (B, action_shape) | |
if share_encoder: # if share_encoder, actor_encoder's grad is not None | |
is_differentiable(mu.sum() + sigma.sum(), model.actor_head) | |
else: | |
is_differentiable(mu.sum() + sigma.sum(), model.actor) | |