Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
import pytest | |
from itertools import product | |
from ding.model.template import QACDIST | |
from ding.torch_utils import is_differentiable | |
from ding.utils import squeeze | |
B = 4 | |
T = 6 | |
embedding_size = 32 | |
action_shape_args = [(6, ), [ | |
1, | |
]] | |
args = list(product(*[action_shape_args, ['regression', 'reparameterization']])) | |
class TestQACDIST: | |
def test_fcqac_dist(self, action_shape, action_space): | |
N = 32 | |
inputs = {'obs': torch.randn(B, N), 'action': torch.randn(B, squeeze(action_shape))} | |
model = QACDIST( | |
obs_shape=(N, ), | |
action_shape=action_shape, | |
action_space=action_space, | |
critic_head_hidden_size=embedding_size, | |
actor_head_hidden_size=embedding_size, | |
) | |
# compute_q | |
q = model(inputs, mode='compute_critic') | |
is_differentiable(q['q_value'].sum(), model.critic) | |
if isinstance(action_shape, int): | |
assert q['q_value'].shape == (B, 1) | |
assert q['distribution'].shape == (B, 1, 51) | |
elif len(action_shape) == 1: | |
assert q['q_value'].shape == (B, 1) | |
assert q['distribution'].shape == (B, 1, 51) | |
# compute_action | |
print(model) | |
if action_space == 'regression': | |
action = model(inputs['obs'], mode='compute_actor')['action'] | |
if squeeze(action_shape) == 1: | |
assert action.shape == (B, ) | |
else: | |
assert action.shape == (B, squeeze(action_shape)) | |
assert action.eq(action.clamp(-1, 1)).all() | |
is_differentiable(action.sum(), model.actor) | |
elif action_space == 'reparameterization': | |
(mu, sigma) = model(inputs['obs'], mode='compute_actor')['logit'] | |
assert mu.shape == (B, *action_shape) | |
assert sigma.shape == (B, *action_shape) | |
is_differentiable(mu.sum() + sigma.sum(), model.actor) | |