Spaces:
Sleeping
Sleeping
import pytest | |
from itertools import product | |
import torch | |
from ding.model.template import QTran | |
from ding.torch_utils import is_differentiable | |
def test_qtran(): | |
agent_num, bs, T = 4, 3, 8 | |
obs_dim, global_obs_dim, action_dim = 32, 32 * 4, 9 | |
embedding_dim = 64 | |
data = { | |
'obs': { | |
'agent_state': torch.randn(T, bs, agent_num, obs_dim), | |
'global_state': torch.randn(T, bs, global_obs_dim), | |
'action_mask': torch.randint(0, 2, size=(T, bs, agent_num, action_dim)) | |
}, | |
'prev_state': [[None for _ in range(agent_num)] for _ in range(bs)], | |
'action': torch.randint(0, action_dim, size=(T, bs, agent_num)) | |
} | |
model = QTran(agent_num, obs_dim, global_obs_dim, action_dim, [32, embedding_dim], embedding_dim) | |
output = model.forward(data, single_step=False) | |
assert set(output.keys()) == set(['next_state', 'agent_q_act', 'vs', 'logit', 'action_mask', 'total_q']) | |
assert output['total_q'].shape == (T, bs) | |
assert output['logit'].shape == (T, bs, agent_num, action_dim) | |
assert len(output['next_state']) == bs and all([len(n) == agent_num for n in output['next_state']]) | |
print(output['next_state'][0][0]['h'].shape) | |
loss = output['total_q'].sum() + output['agent_q_act'].sum() + output['vs'].sum() | |
is_differentiable(loss, model) | |
data.pop('action') | |
outputs = model.forward(data, single_step=False) | |