Spaces:
Sleeping
Sleeping
import pytest | |
import torch | |
from ding.torch_utils import is_differentiable | |
from ding.model.template.wqmix import MixerStar, WQMix | |
args = [True, False] | |
def test_mixer_star(): | |
agent_num, bs, embedding_dim = 4, 3, 32 | |
agent_q = torch.randn(bs, agent_num) | |
state_embedding = torch.randn(bs, embedding_dim) | |
mixer_star = MixerStar(agent_num, embedding_dim, 64) | |
total_q = mixer_star(agent_q, state_embedding) | |
assert total_q.shape == (bs, ) | |
loss = total_q.mean() | |
is_differentiable(loss, mixer_star) | |
def test_wqmix(is_q_star): | |
agent_num, bs, T = 4, 3, 8 | |
obs_dim, global_obs_dim, action_dim = 32, 32 * 4, 9 | |
embedding_dim = 64 | |
wqmix_model = WQMix(agent_num, obs_dim, global_obs_dim, action_dim, [128, embedding_dim], 'gru') | |
data = { | |
'obs': { | |
'agent_state': torch.randn(T, bs, agent_num, obs_dim), | |
'global_state': torch.randn(T, bs, global_obs_dim), | |
'action_mask': torch.randint(0, 2, size=(T, bs, agent_num, action_dim)) | |
}, | |
'prev_state': [[None for _ in range(agent_num)] for _ in range(bs)], | |
'action': torch.randint(0, action_dim, size=(T, bs, agent_num)) | |
} | |
output = wqmix_model(data, single_step=False, q_star=is_q_star) | |
assert set(output.keys()) == set(['total_q', 'logit', 'next_state', 'action_mask']) | |
assert output['total_q'].shape == (T, bs) | |
assert output['logit'].shape == (T, bs, agent_num, action_dim) | |
assert len(output['next_state']) == bs and all([len(n) == agent_num for n in output['next_state']]) | |
print(output['next_state'][0][0]['h'].shape) | |
loss = output['total_q'].sum() | |
if is_q_star: | |
is_differentiable(loss, [wqmix_model._q_network_star, wqmix_model._mixer_star]) | |
else: | |
is_differentiable(loss, [wqmix_model._q_network, wqmix_model._mixer]) | |
data.pop('action') | |
output = wqmix_model(data, single_step=False, q_star=is_q_star) | |