Spaces:
Sleeping
Sleeping
from typing import Union, Dict, Optional | |
from easydict import EasyDict | |
import torch | |
import torch.nn as nn | |
from copy import deepcopy | |
from ding.utils import SequenceType, squeeze, MODEL_REGISTRY | |
from ..common import ReparameterizationHead, RegressionHead, DiscreteHead, MultiHead, \ | |
FCEncoder, ConvEncoder, IMPALAConvEncoder | |
from ding.torch_utils.network.dreamer import ActionHead, DenseHead | |
class VAC(nn.Module): | |
""" | |
Overview: | |
The neural network and computation graph of algorithms related to (state) Value Actor-Critic (VAC), such as \ | |
A2C/PPO/IMPALA. This model now supports discrete, continuous and hybrid action space. The VAC is composed of \ | |
four parts: ``actor_encoder``, ``critic_encoder``, ``actor_head`` and ``critic_head``. Encoders are used to \ | |
extract the feature from various observation. Heads are used to predict corresponding value or action logit. \ | |
In high-dimensional observation space like 2D image, we often use a shared encoder for both ``actor_encoder`` \ | |
and ``critic_encoder``. In low-dimensional observation space like 1D vector, we often use different encoders. | |
Interfaces: | |
``__init__``, ``forward``, ``compute_actor``, ``compute_critic``, ``compute_actor_critic``. | |
""" | |
mode = ['compute_actor', 'compute_critic', 'compute_actor_critic'] | |
def __init__( | |
self, | |
obs_shape: Union[int, SequenceType], | |
action_shape: Union[int, SequenceType, EasyDict], | |
action_space: str = 'discrete', | |
share_encoder: bool = True, | |
encoder_hidden_size_list: SequenceType = [128, 128, 64], | |
actor_head_hidden_size: int = 64, | |
actor_head_layer_num: int = 1, | |
critic_head_hidden_size: int = 64, | |
critic_head_layer_num: int = 1, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
sigma_type: Optional[str] = 'independent', | |
fixed_sigma_value: Optional[int] = 0.3, | |
bound_type: Optional[str] = None, | |
encoder: Optional[torch.nn.Module] = None, | |
impala_cnn_encoder: bool = False, | |
) -> None: | |
""" | |
Overview: | |
Initialize the VAC model according to corresponding input arguments. | |
Arguments: | |
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape, such as 8 or [4, 84, 84]. | |
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape, such as 6 or [2, 3, 3]. | |
- action_space (:obj:`str`): The type of different action spaces, including ['discrete', 'continuous', \ | |
'hybrid'], then will instantiate corresponding head, including ``DiscreteHead``, \ | |
``ReparameterizationHead``, and hybrid heads. | |
- share_encoder (:obj:`bool`): Whether to share observation encoders between actor and decoder. | |
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``, \ | |
the last element must match ``head_hidden_size``. | |
- actor_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of ``actor_head`` network, defaults \ | |
to 64, it must match the last element of ``encoder_hidden_size_list``. | |
- actor_head_layer_num (:obj:`int`): The num of layers used in the ``actor_head`` network to compute action. | |
- critic_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of ``critic_head`` network, defaults \ | |
to 64, it must match the last element of ``encoder_hidden_size_list``. | |
- critic_head_layer_num (:obj:`int`): The num of layers used in the ``critic_head`` network. | |
- activation (:obj:`Optional[nn.Module]`): The type of activation function in networks \ | |
if ``None`` then default set it to ``nn.ReLU()``. | |
- norm_type (:obj:`Optional[str]`): The type of normalization in networks, see \ | |
``ding.torch_utils.fc_block`` for more details. you can choose one of ['BN', 'IN', 'SyncBN', 'LN'] | |
- sigma_type (:obj:`Optional[str]`): The type of sigma in continuous action space, see \ | |
``ding.torch_utils.network.dreamer.ReparameterizationHead`` for more details, in A2C/PPO, it defaults \ | |
to ``independent``, which means state-independent sigma parameters. | |
- fixed_sigma_value (:obj:`Optional[int]`): If ``sigma_type`` is ``fixed``, then use this value as sigma. | |
- bound_type (:obj:`Optional[str]`): The type of action bound methods in continuous action space, defaults \ | |
to ``None``, which means no bound. | |
- encoder (:obj:`Optional[torch.nn.Module]`): The encoder module, defaults to ``None``, you can define \ | |
your own encoder module and pass it into VAC to deal with different observation space. | |
- impala_cnn_encoder (:obj:`bool`): Whether to use IMPALA CNN encoder, defaults to ``False``. | |
""" | |
super(VAC, self).__init__() | |
obs_shape: int = squeeze(obs_shape) | |
action_shape = squeeze(action_shape) | |
self.obs_shape, self.action_shape = obs_shape, action_shape | |
self.impala_cnn_encoder = impala_cnn_encoder | |
self.share_encoder = share_encoder | |
# Encoder Type | |
def new_encoder(outsize, activation): | |
if impala_cnn_encoder: | |
return IMPALAConvEncoder(obs_shape=obs_shape, channels=encoder_hidden_size_list, outsize=outsize) | |
else: | |
if isinstance(obs_shape, int) or len(obs_shape) == 1: | |
return FCEncoder( | |
obs_shape=obs_shape, | |
hidden_size_list=encoder_hidden_size_list, | |
activation=activation, | |
norm_type=norm_type | |
) | |
elif len(obs_shape) == 3: | |
return ConvEncoder( | |
obs_shape=obs_shape, | |
hidden_size_list=encoder_hidden_size_list, | |
activation=activation, | |
norm_type=norm_type | |
) | |
else: | |
raise RuntimeError( | |
"not support obs_shape for pre-defined encoder: {}, please customize your own encoder". | |
format(obs_shape) | |
) | |
if self.share_encoder: | |
assert actor_head_hidden_size == critic_head_hidden_size, \ | |
"actor and critic network head should have same size." | |
if encoder: | |
if isinstance(encoder, torch.nn.Module): | |
self.encoder = encoder | |
else: | |
raise ValueError("illegal encoder instance.") | |
else: | |
self.encoder = new_encoder(actor_head_hidden_size, activation) | |
else: | |
if encoder: | |
if isinstance(encoder, torch.nn.Module): | |
self.actor_encoder = encoder | |
self.critic_encoder = deepcopy(encoder) | |
else: | |
raise ValueError("illegal encoder instance.") | |
else: | |
self.actor_encoder = new_encoder(actor_head_hidden_size, activation) | |
self.critic_encoder = new_encoder(critic_head_hidden_size, activation) | |
# Head Type | |
self.critic_head = RegressionHead( | |
critic_head_hidden_size, 1, critic_head_layer_num, activation=activation, norm_type=norm_type | |
) | |
self.action_space = action_space | |
assert self.action_space in ['discrete', 'continuous', 'hybrid'], self.action_space | |
if self.action_space == 'continuous': | |
self.multi_head = False | |
self.actor_head = ReparameterizationHead( | |
actor_head_hidden_size, | |
action_shape, | |
actor_head_layer_num, | |
sigma_type=sigma_type, | |
activation=activation, | |
norm_type=norm_type, | |
bound_type=bound_type | |
) | |
elif self.action_space == 'discrete': | |
actor_head_cls = DiscreteHead | |
multi_head = not isinstance(action_shape, int) | |
self.multi_head = multi_head | |
if multi_head: | |
self.actor_head = MultiHead( | |
actor_head_cls, | |
actor_head_hidden_size, | |
action_shape, | |
layer_num=actor_head_layer_num, | |
activation=activation, | |
norm_type=norm_type | |
) | |
else: | |
self.actor_head = actor_head_cls( | |
actor_head_hidden_size, | |
action_shape, | |
actor_head_layer_num, | |
activation=activation, | |
norm_type=norm_type | |
) | |
elif self.action_space == 'hybrid': # HPPO | |
# hybrid action space: action_type(discrete) + action_args(continuous), | |
# such as {'action_type_shape': torch.LongTensor([0]), 'action_args_shape': torch.FloatTensor([0.1, -0.27])} | |
action_shape.action_args_shape = squeeze(action_shape.action_args_shape) | |
action_shape.action_type_shape = squeeze(action_shape.action_type_shape) | |
actor_action_args = ReparameterizationHead( | |
actor_head_hidden_size, | |
action_shape.action_args_shape, | |
actor_head_layer_num, | |
sigma_type=sigma_type, | |
fixed_sigma_value=fixed_sigma_value, | |
activation=activation, | |
norm_type=norm_type, | |
bound_type=bound_type, | |
) | |
actor_action_type = DiscreteHead( | |
actor_head_hidden_size, | |
action_shape.action_type_shape, | |
actor_head_layer_num, | |
activation=activation, | |
norm_type=norm_type, | |
) | |
self.actor_head = nn.ModuleList([actor_action_type, actor_action_args]) | |
if self.share_encoder: | |
self.actor = [self.encoder, self.actor_head] | |
self.critic = [self.encoder, self.critic_head] | |
else: | |
self.actor = [self.actor_encoder, self.actor_head] | |
self.critic = [self.critic_encoder, self.critic_head] | |
# Convenient for calling some apis (e.g. self.critic.parameters()), | |
# but may cause misunderstanding when `print(self)` | |
self.actor = nn.ModuleList(self.actor) | |
self.critic = nn.ModuleList(self.critic) | |
def forward(self, x: torch.Tensor, mode: str) -> Dict: | |
""" | |
Overview: | |
VAC forward computation graph, input observation tensor to predict state value or action logit. Different \ | |
``mode`` will forward with different network modules to get different outputs and save computation. | |
Arguments: | |
- x (:obj:`torch.Tensor`): The input observation tensor data. | |
- mode (:obj:`str`): The forward mode, all the modes are defined in the beginning of this class. | |
Returns: | |
- outputs (:obj:`Dict`): The output dict of VAC's forward computation graph, whose key-values vary from \ | |
different ``mode``. | |
Examples (Actor): | |
>>> model = VAC(64, 128) | |
>>> inputs = torch.randn(4, 64) | |
>>> actor_outputs = model(inputs,'compute_actor') | |
>>> assert actor_outputs['logit'].shape == torch.Size([4, 128]) | |
Examples (Critic): | |
>>> model = VAC(64, 64) | |
>>> inputs = torch.randn(4, 64) | |
>>> critic_outputs = model(inputs,'compute_critic') | |
>>> assert actor_outputs['logit'].shape == torch.Size([4, 64]) | |
Examples (Actor-Critic): | |
>>> model = VAC(64, 64) | |
>>> inputs = torch.randn(4, 64) | |
>>> outputs = model(inputs,'compute_actor_critic') | |
>>> assert critic_outputs['value'].shape == torch.Size([4]) | |
>>> assert outputs['logit'].shape == torch.Size([4, 64]) | |
""" | |
assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode) | |
return getattr(self, mode)(x) | |
def compute_actor(self, x: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
VAC forward computation graph for actor part, input observation tensor to predict action logit. | |
Arguments: | |
- x (:obj:`torch.Tensor`): The input observation tensor data. | |
Returns: | |
- outputs (:obj:`Dict`): The output dict of VAC's forward computation graph for actor, including ``logit``. | |
ReturnsKeys: | |
- logit (:obj:`torch.Tensor`): The predicted action logit tensor, for discrete action space, it will be \ | |
the same dimension real-value ranged tensor of possible action choices, and for continuous action \ | |
space, it will be the mu and sigma of the Gaussian distribution, and the number of mu and sigma is the \ | |
same as the number of continuous actions. Hybrid action space is a kind of combination of discrete \ | |
and continuous action space, so the logit will be a dict with ``action_type`` and ``action_args``. | |
Shapes: | |
- logit (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is ``action_shape`` | |
Examples: | |
>>> model = VAC(64, 64) | |
>>> inputs = torch.randn(4, 64) | |
>>> actor_outputs = model(inputs,'compute_actor') | |
>>> assert actor_outputs['logit'].shape == torch.Size([4, 64]) | |
""" | |
if self.share_encoder: | |
x = self.encoder(x) | |
else: | |
x = self.actor_encoder(x) | |
if self.action_space == 'discrete': | |
return self.actor_head(x) | |
elif self.action_space == 'continuous': | |
x = self.actor_head(x) # mu, sigma | |
return {'logit': x} | |
elif self.action_space == 'hybrid': | |
action_type = self.actor_head[0](x) | |
action_args = self.actor_head[1](x) | |
return {'logit': {'action_type': action_type['logit'], 'action_args': action_args}} | |
def compute_critic(self, x: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
VAC forward computation graph for critic part, input observation tensor to predict state value. | |
Arguments: | |
- x (:obj:`torch.Tensor`): The input observation tensor data. | |
Returns: | |
- outputs (:obj:`Dict`): The output dict of VAC's forward computation graph for critic, including ``value``. | |
ReturnsKeys: | |
- value (:obj:`torch.Tensor`): The predicted state value tensor. | |
Shapes: | |
- value (:obj:`torch.Tensor`): :math:`(B, )`, where B is batch size, (B, 1) is squeezed to (B, ). | |
Examples: | |
>>> model = VAC(64, 64) | |
>>> inputs = torch.randn(4, 64) | |
>>> critic_outputs = model(inputs,'compute_critic') | |
>>> assert critic_outputs['value'].shape == torch.Size([4]) | |
""" | |
if self.share_encoder: | |
x = self.encoder(x) | |
else: | |
x = self.critic_encoder(x) | |
x = self.critic_head(x) | |
return {'value': x['pred']} | |
def compute_actor_critic(self, x: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
VAC forward computation graph for both actor and critic part, input observation tensor to predict action \ | |
logit and state value. | |
Arguments: | |
- x (:obj:`torch.Tensor`): The input observation tensor data. | |
Returns: | |
- outputs (:obj:`Dict`): The output dict of VAC's forward computation graph for both actor and critic, \ | |
including ``logit`` and ``value``. | |
ReturnsKeys: | |
- logit (:obj:`torch.Tensor`): The predicted action logit tensor, for discrete action space, it will be \ | |
the same dimension real-value ranged tensor of possible action choices, and for continuous action \ | |
space, it will be the mu and sigma of the Gaussian distribution, and the number of mu and sigma is the \ | |
same as the number of continuous actions. Hybrid action space is a kind of combination of discrete \ | |
and continuous action space, so the logit will be a dict with ``action_type`` and ``action_args``. | |
- value (:obj:`torch.Tensor`): The predicted state value tensor. | |
Shapes: | |
- logit (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is ``action_shape`` | |
- value (:obj:`torch.Tensor`): :math:`(B, )`, where B is batch size, (B, 1) is squeezed to (B, ). | |
Examples: | |
>>> model = VAC(64, 64) | |
>>> inputs = torch.randn(4, 64) | |
>>> outputs = model(inputs,'compute_actor_critic') | |
>>> assert critic_outputs['value'].shape == torch.Size([4]) | |
>>> assert outputs['logit'].shape == torch.Size([4, 64]) | |
.. note:: | |
``compute_actor_critic`` interface aims to save computation when shares encoder and return the combination \ | |
dict output. | |
""" | |
if self.share_encoder: | |
actor_embedding = critic_embedding = self.encoder(x) | |
else: | |
actor_embedding = self.actor_encoder(x) | |
critic_embedding = self.critic_encoder(x) | |
value = self.critic_head(critic_embedding)['pred'] | |
if self.action_space == 'discrete': | |
logit = self.actor_head(actor_embedding)['logit'] | |
return {'logit': logit, 'value': value} | |
elif self.action_space == 'continuous': | |
x = self.actor_head(actor_embedding) | |
return {'logit': x, 'value': value} | |
elif self.action_space == 'hybrid': | |
action_type = self.actor_head[0](actor_embedding) | |
action_args = self.actor_head[1](actor_embedding) | |
return {'logit': {'action_type': action_type['logit'], 'action_args': action_args}, 'value': value} | |
class DREAMERVAC(nn.Module): | |
""" | |
Overview: | |
The neural network and computation graph of DreamerV3 (state) Value Actor-Critic (VAC). | |
This model now supports discrete, continuous action space. | |
Interfaces: | |
``__init__``, ``forward``. | |
""" | |
mode = ['compute_actor', 'compute_critic', 'compute_actor_critic'] | |
def __init__( | |
self, | |
obs_shape: Union[int, SequenceType], | |
action_shape: Union[int, SequenceType, EasyDict], | |
dyn_stoch=32, | |
dyn_deter=512, | |
dyn_discrete=32, | |
actor_layers=2, | |
value_layers=2, | |
units=512, | |
act='SiLU', | |
norm='LayerNorm', | |
actor_dist='normal', | |
actor_init_std=1.0, | |
actor_min_std=0.1, | |
actor_max_std=1.0, | |
actor_temp=0.1, | |
action_unimix_ratio=0.01, | |
) -> None: | |
""" | |
Overview: | |
Initialize the ``DREAMERVAC`` model according to arguments. | |
Arguments: | |
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape, such as 8 or [4, 84, 84]. | |
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape, such as 6 or [2, 3, 3]. | |
""" | |
super(DREAMERVAC, self).__init__() | |
obs_shape: int = squeeze(obs_shape) | |
action_shape = squeeze(action_shape) | |
self.obs_shape, self.action_shape = obs_shape, action_shape | |
if dyn_discrete: | |
feat_size = dyn_stoch * dyn_discrete + dyn_deter | |
else: | |
feat_size = dyn_stoch + dyn_deter | |
self.actor = ActionHead( | |
feat_size, # pytorch version | |
action_shape, | |
actor_layers, | |
units, | |
act, | |
norm, | |
actor_dist, | |
actor_init_std, | |
actor_min_std, | |
actor_max_std, | |
actor_temp, | |
outscale=1.0, | |
unimix_ratio=action_unimix_ratio, | |
) | |
self.critic = DenseHead( | |
feat_size, # pytorch version | |
(255, ), | |
value_layers, | |
units, | |
'SiLU', # act | |
'LN', # norm | |
'twohot_symlog', | |
outscale=0.0, | |
device='cuda' if torch.cuda.is_available() else 'cpu', | |
) | |