zjowowen's picture
init space
3dfe8fb
from typing import List, Dict, Any, Tuple
from collections import namedtuple
import copy
import torch
from torch.optim import AdamW
from ding.torch_utils import Adam, to_device
from ding.rl_utils import q_nstep_td_data, q_nstep_td_error, get_nstep_return_data, get_train_sample, \
dqfd_nstep_td_error, dqfd_nstep_td_data
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_collate, default_decollate
from .dqn import DQNPolicy
from .common_utils import default_preprocess_learn
from copy import deepcopy
@POLICY_REGISTRY.register('dqfd')
class DQFDPolicy(DQNPolicy):
r"""
Overview:
Policy class of DQFD algorithm, extended by Double DQN/Dueling DQN/PER/multi-step TD.
Config:
== ==================== ======== ============== ======================================== =======================
ID Symbol Type Default Value Description Other(Shape)
== ==================== ======== ============== ======================================== =======================
1 ``type`` str dqn | RL policy register name, refer to | This arg is optional,
| registry ``POLICY_REGISTRY`` | a placeholder
2 ``cuda`` bool False | Whether to use cuda for network | This arg can be diff-
| erent from modes
3 ``on_policy`` bool False | Whether the RL algorithm is on-policy
| or off-policy
4 ``priority`` bool True | Whether use priority(PER) | Priority sample,
| update priority
5 | ``priority_IS`` bool True | Whether use Importance Sampling Weight
| ``_weight`` | to correct biased update. If True,
| priority must be True.
6 | ``discount_`` float 0.97, | Reward's future discount factor, aka. | May be 1 when sparse
| ``factor`` [0.95, 0.999] | gamma | reward env
7 ``nstep`` int 10, | N-step reward discount sum for target
[3, 5] | q_value estimation
8 | ``lambda1`` float 1 | multiplicative factor for n-step
9 | ``lambda2`` float 1 | multiplicative factor for the
| supervised margin loss
10 | ``lambda3`` float 1e-5 | L2 loss
11 | ``margin_fn`` float 0.8 | margin function in JE, here we set
| this as a constant
12 | ``per_train_`` int 10 | number of pertraining iterations
| ``iter_k``
13 | ``learn.update`` int 3 | How many updates(iterations) to train | This args can be vary
| ``per_collect`` | after collector's one collection. Only | from envs. Bigger val
| valid in serial training | means more off-policy
14 | ``learn.batch_`` int 64 | The number of samples of an iteration
| ``size``
15 | ``learn.learning`` float 0.001 | Gradient step length of an iteration.
| ``_rate``
16 | ``learn.target_`` int 100 | Frequency of target network update. | Hard(assign) update
| ``update_freq``
17 | ``learn.ignore_`` bool False | Whether ignore done for target value | Enable it for some
| ``done`` | calculation. | fake termination env
18 ``collect.n_sample`` int [8, 128] | The number of training samples of a | It varies from
| call of collector. | different envs
19 | ``collect.unroll`` int 1 | unroll length of an iteration | In RNN, unroll_len>1
| ``_len``
== ==================== ======== ============== ======================================== =======================
"""
config = dict(
type='dqfd',
cuda=False,
on_policy=False,
priority=True,
# (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
priority_IS_weight=True,
discount_factor=0.99,
nstep=10,
learn=dict(
# multiplicative factor for each loss
lambda1=1.0, # n-step return
lambda2=1.0, # supervised loss
lambda3=1e-5, # L2
# margin function in JE, here we implement this as a constant
margin_function=0.8,
# number of pertraining iterations
per_train_iter_k=10,
# How many updates(iterations) to train after collector's one collection.
# Bigger "update_per_collect" means bigger off-policy.
# collect data -> update policy-> collect data -> ...
update_per_collect=3,
batch_size=64,
learning_rate=0.001,
# ==============================================================
# The following configs are algorithm-specific
# ==============================================================
# (int) Frequence of target network update.
target_update_freq=100,
# (bool) Whether ignore done(usually for max step termination env)
ignore_done=False,
),
# collect_mode config
collect=dict(
# (int) Only one of [n_sample, n_episode] should be set
# n_sample=8,
# (int) Cut trajectories into pieces with length "unroll_len".
unroll_len=1,
# The hyperparameter pho, the demo ratio, control the propotion of data\
# coming from expert demonstrations versus from the agent's own experience.
pho=0.5,
),
eval=dict(),
# other config
other=dict(
# Epsilon greedy with decay.
eps=dict(
# (str) Decay type. Support ['exp', 'linear'].
type='exp',
start=0.95,
end=0.1,
# (int) Decay length(env step)
decay=10000,
),
replay_buffer=dict(replay_buffer_size=10000, ),
),
)
def _init_learn(self) -> None:
"""
Overview:
Learn mode init method. Called by ``self.__init__``, initialize the optimizer, algorithm arguments, main \
and target model.
"""
self.lambda1 = self._cfg.learn.lambda1 # n-step return
self.lambda2 = self._cfg.learn.lambda2 # supervised loss
self.lambda3 = self._cfg.learn.lambda3 # L2
# margin function in JE, here we implement this as a constant
self.margin_function = self._cfg.learn.margin_function
self._priority = self._cfg.priority
self._priority_IS_weight = self._cfg.priority_IS_weight
# Optimizer
# two optimizers: the performance of adamW is better than adam, so we recommend using the adamW.
self._optimizer = AdamW(self._model.parameters(), lr=self._cfg.learn.learning_rate, weight_decay=self.lambda3)
# self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate, weight_decay=self.lambda3)
self._gamma = self._cfg.discount_factor
self._nstep = self._cfg.nstep
# use model_wrapper for specialized demands of different modes
self._target_model = copy.deepcopy(self._model)
self._target_model = model_wrap(
self._target_model,
wrapper_name='target',
update_type='assign',
update_kwargs={'freq': self._cfg.learn.target_update_freq}
)
self._learn_model = model_wrap(self._model, wrapper_name='argmax_sample')
self._learn_model.reset()
self._target_model.reset()
def _forward_learn(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""
Overview:
Forward computation graph of learn mode(updating policy).
Arguments:
- data (:obj:`Dict[str, Any]`): Dict type data, a batch of data for training, values are torch.Tensor or \
np.ndarray or dict/list combinations.
Returns:
- info_dict (:obj:`Dict[str, Any]`): Dict type data, a info dict indicated training result, which will be \
recorded in text log and tensorboard, values are python scalar or a list of scalars.
ArgumentsKeys:
- necessary: ``obs``, ``action``, ``reward``, ``next_obs``, ``done``
- optional: ``value_gamma``, ``IS``
ReturnsKeys:
- necessary: ``cur_lr``, ``total_loss``, ``priority``
- optional: ``action_distribution``
"""
data = default_preprocess_learn(
data,
use_priority=self._priority,
use_priority_IS_weight=self._cfg.priority_IS_weight,
ignore_done=self._cfg.learn.ignore_done,
use_nstep=True
)
data['done_1'] = data['done_1'].float()
if self._cuda:
data = to_device(data, self._device)
# ====================
# Q-learning forward
# ====================
self._learn_model.train()
self._target_model.train()
# Current q value (main model)
q_value = self._learn_model.forward(data['obs'])['logit']
# Target q value
with torch.no_grad():
target_q_value = self._target_model.forward(data['next_obs'])['logit']
target_q_value_one_step = self._target_model.forward(data['next_obs_1'])['logit']
# Max q value action (main model)
target_q_action = self._learn_model.forward(data['next_obs'])['action']
target_q_action_one_step = self._learn_model.forward(data['next_obs_1'])['action']
# modify the tensor type to match the JE computation in dqfd_nstep_td_error
is_expert = data['is_expert'].float()
data_n = dqfd_nstep_td_data(
q_value,
target_q_value,
data['action'],
target_q_action,
data['reward'],
data['done'],
data['done_1'],
data['weight'],
target_q_value_one_step,
target_q_action_one_step,
is_expert # set is_expert flag(expert 1, agent 0)
)
value_gamma = data.get('value_gamma')
loss, td_error_per_sample, loss_statistics = dqfd_nstep_td_error(
data_n,
self._gamma,
self.lambda1,
self.lambda2,
self.margin_function,
nstep=self._nstep,
value_gamma=value_gamma
)
# ====================
# Q-learning update
# ====================
self._optimizer.zero_grad()
loss.backward()
if self._cfg.multi_gpu:
self.sync_gradients(self._learn_model)
self._optimizer.step()
# =============
# after update
# =============
self._target_model.update(self._learn_model.state_dict())
return {
'cur_lr': self._optimizer.defaults['lr'],
'total_loss': loss.item(),
'priority': td_error_per_sample.abs().tolist(),
# Only discrete action satisfying len(data['action'])==1 can return this and draw histogram on tensorboard.
# '[histogram]action_distribution': data['action'],
}
def _get_train_sample(self, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
Overview:
For a given trajectory(transitions, a list of transition) data, process it into a list of sample that \
can be used for training directly. A train sample can be a processed transition(DQN with nstep TD) \
or some continuous transitions(DRQN).
Arguments:
- data (:obj:`List[Dict[str, Any]`): The trajectory data(a list of transition), each element is the same \
format as the return value of ``self._process_transition`` method.
Returns:
- samples (:obj:`dict`): The list of training samples.
.. note::
We will vectorize ``process_transition`` and ``get_train_sample`` method in the following release version. \
And the user can customize the this data processing procecure by overriding this two methods and collector \
itself.
"""
data_1 = deepcopy(get_nstep_return_data(data, 1, gamma=self._gamma))
data = get_nstep_return_data(
data, self._nstep, gamma=self._gamma
) # here we want to include one-step next observation
for i in range(len(data)):
data[i]['next_obs_1'] = data_1[i]['next_obs'] # concat the one-step next observation
data[i]['done_1'] = data_1[i]['done']
return get_train_sample(data, self._unroll_len)