gomoku / DI-engine /ding /policy /offppo_collect_traj.py
zjowowen's picture
init space
3dfe8fb
from typing import List, Dict, Any, Tuple, Union
from collections import namedtuple
import torch
import copy
import numpy as np
from torch.distributions import Independent, Normal
from ding.torch_utils import Adam, to_device
from ding.rl_utils import ppo_data, ppo_error, ppo_policy_error, ppo_policy_data, get_gae_with_default_last_value, \
v_nstep_td_data, v_nstep_td_error, get_nstep_return_data, get_train_sample, gae, gae_data, ppo_error_continuous,\
get_gae
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY, split_data_generator, RunningMeanStd
from ding.utils.data import default_collate, default_decollate
from .base_policy import Policy
from .common_utils import default_preprocess_learn
@POLICY_REGISTRY.register('offppo_collect_traj')
class OffPPOCollectTrajPolicy(Policy):
r"""
Overview:
Policy class of off policy PPO algorithm to collect expert traj for R2D3.
"""
config = dict(
# (str) RL policy register name (refer to function "POLICY_REGISTRY").
type='ppo',
# (bool) Whether to use cuda for network.
cuda=False,
# (bool) Whether the RL algorithm is on-policy or off-policy. (Note: in practice PPO can be off-policy used)
on_policy=True,
# (bool) Whether to use priority(priority sample, IS weight, update priority)
priority=False,
# (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
priority_IS_weight=False,
# (bool) Whether to use nstep_return for value loss
nstep_return=False,
nstep=3,
learn=dict(
# How many updates(iterations) to train after collector's one collection.
# Bigger "update_per_collect" means bigger off-policy.
# collect data -> update policy-> collect data -> ...
update_per_collect=5,
batch_size=64,
learning_rate=0.001,
# ==============================================================
# The following configs is algorithm-specific
# ==============================================================
# (float) The loss weight of value network, policy network weight is set to 1
value_weight=0.5,
# (float) The loss weight of entropy regularization, policy network weight is set to 1
entropy_weight=0.01,
# (float) PPO clip ratio, defaults to 0.2
clip_ratio=0.2,
# (bool) Whether to use advantage norm in a whole training batch
adv_norm=False,
ignore_done=False,
),
collect=dict(
# ==============================================================
# The following configs is algorithm-specific
# ==============================================================
# (float) Reward's future discount factor, aka. gamma.
discount_factor=0.99,
# (float) GAE lambda factor for the balance of bias and variance(1-step td and mc)
gae_lambda=0.95,
),
eval=dict(),
other=dict(replay_buffer=dict(replay_buffer_size=10000, ), ),
)
def default_model(self) -> Tuple[str, List[str]]:
return 'vac', ['ding.model.template.vac']
def _init_learn(self) -> None:
r"""
Overview:
Learn mode init method. Called by ``self.__init__``.
Init the optimizer, algorithm config and the main model.
"""
self._priority = self._cfg.priority
self._priority_IS_weight = self._cfg.priority_IS_weight
assert not self._priority and not self._priority_IS_weight, "Priority is not implemented in PPO"
# Orthogonal init
for m in self._model.modules():
if isinstance(m, torch.nn.Conv2d):
torch.nn.init.orthogonal_(m.weight)
if isinstance(m, torch.nn.Linear):
torch.nn.init.orthogonal_(m.weight)
# Optimizer
self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate)
self._learn_model = model_wrap(self._model, wrapper_name='base')
# Algorithm config
self._value_weight = self._cfg.learn.value_weight
self._entropy_weight = self._cfg.learn.entropy_weight
self._clip_ratio = self._cfg.learn.clip_ratio
self._adv_norm = self._cfg.learn.adv_norm
self._nstep = self._cfg.nstep
self._nstep_return = self._cfg.nstep_return
# Main model
self._learn_model.reset()
def _forward_learn(self, data: dict) -> Dict[str, Any]:
r"""
Overview:
Forward and backward function of learn mode.
Arguments:
- data (:obj:`dict`): Dict type data
Returns:
- info_dict (:obj:`Dict[str, Any]`):
Including current lr, total_loss, policy_loss, value_loss, entropy_loss, \
adv_abs_max, approx_kl, clipfrac
"""
data = default_preprocess_learn(data, ignore_done=self._cfg.learn.ignore_done, use_nstep=self._nstep_return)
if self._cuda:
data = to_device(data, self._device)
# ====================
# PPO forward
# ====================
self._learn_model.train()
# normal ppo
if not self._nstep_return:
output = self._learn_model.forward(data['obs'], mode='compute_actor_critic')
adv = data['adv']
return_ = data['value'] + adv
if self._adv_norm:
# Normalize advantage in a total train_batch
adv = (adv - adv.mean()) / (adv.std() + 1e-8)
# Calculate ppo error
ppodata = ppo_data(
output['logit'], data['logit'], data['action'], output['value'], data['value'], adv, return_,
data['weight']
)
ppo_loss, ppo_info = ppo_error(ppodata, self._clip_ratio)
wv, we = self._value_weight, self._entropy_weight
total_loss = ppo_loss.policy_loss + wv * ppo_loss.value_loss - we * ppo_loss.entropy_loss
else:
output = self._learn_model.forward(data['obs'], mode='compute_actor')
adv = data['adv']
if self._adv_norm:
# Normalize advantage in a total train_batch
adv = (adv - adv.mean()) / (adv.std() + 1e-8)
# Calculate ppo error
ppodata = ppo_policy_data(output['logit'], data['logit'], data['action'], adv, data['weight'])
ppo_policy_loss, ppo_info = ppo_policy_error(ppodata, self._clip_ratio)
wv, we = self._value_weight, self._entropy_weight
next_obs = data.get('next_obs')
value_gamma = data.get('value_gamma')
reward = data.get('reward')
# current value
value = self._learn_model.forward(data['obs'], mode='compute_critic')
# target value
next_data = {'obs': next_obs}
target_value = self._learn_model.forward(next_data['obs'], mode='compute_critic')
# TODO what should we do here to keep shape
assert self._nstep > 1
td_data = v_nstep_td_data(
value['value'], target_value['value'], reward.t(), data['done'], data['weight'], value_gamma
)
# calculate v_nstep_td critic_loss
critic_loss, td_error_per_sample = v_nstep_td_error(td_data, self._gamma, self._nstep)
ppo_loss_data = namedtuple('ppo_loss', ['policy_loss', 'value_loss', 'entropy_loss'])
ppo_loss = ppo_loss_data(ppo_policy_loss.policy_loss, critic_loss, ppo_policy_loss.entropy_loss)
total_loss = ppo_policy_loss.policy_loss + wv * critic_loss - we * ppo_policy_loss.entropy_loss
# ====================
# PPO update
# ====================
self._optimizer.zero_grad()
total_loss.backward()
self._optimizer.step()
return {
'cur_lr': self._optimizer.defaults['lr'],
'total_loss': total_loss.item(),
'policy_loss': ppo_loss.policy_loss.item(),
'value_loss': ppo_loss.value_loss.item(),
'entropy_loss': ppo_loss.entropy_loss.item(),
'adv_abs_max': adv.abs().max().item(),
'approx_kl': ppo_info.approx_kl,
'clipfrac': ppo_info.clipfrac,
}
def _state_dict_learn(self) -> Dict[str, Any]:
return {
'model': self._learn_model.state_dict(),
'optimizer': self._optimizer.state_dict(),
}
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
self._learn_model.load_state_dict(state_dict['model'])
self._optimizer.load_state_dict(state_dict['optimizer'])
def _init_collect(self) -> None:
r"""
Overview:
Collect mode init method. Called by ``self.__init__``.
Init traj and unroll length, collect model.
"""
self._unroll_len = self._cfg.collect.unroll_len
# self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample')
# NOTE this policy is to collect expert traj, so we have to use argmax_sample wrapper
self._collect_model = model_wrap(self._model, wrapper_name='argmax_sample')
self._collect_model.reset()
self._gamma = self._cfg.collect.discount_factor
self._gae_lambda = self._cfg.collect.gae_lambda
self._nstep = self._cfg.nstep
self._nstep_return = self._cfg.nstep_return
def _forward_collect(self, data: dict) -> dict:
r"""
Overview:
Forward function for collect mode
Arguments:
- data (:obj:`dict`): Dict type data, including at least ['obs'].
Returns:
- data (:obj:`dict`): The collected data
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._collect_model.eval()
with torch.no_grad():
output = self._collect_model.forward(data, mode='compute_actor_critic')
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict:
"""
Overview:
Generate dict type transition data from inputs.
Arguments:
- obs (:obj:`Any`): Env observation
- model_output (:obj:`dict`): Output of collect model, including at least ['action']
- timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done']\
(here 'obs' indicates obs after env step).
Returns:
- transition (:obj:`dict`): Dict type transition data.
"""
transition = {
'obs': obs,
'action': model_output['action'],
# 'prev_state': model_output['prev_state'],
'prev_state': None,
'reward': timestep.reward,
'done': timestep.done,
}
return transition
def _get_train_sample(self, data: list) -> Union[None, List[Any]]:
r"""
Overview:
Get the trajectory and calculate GAE, return one data to cache for next time calculation
Arguments:
- data (:obj:`list`): The trajectory's cache
Returns:
- samples (:obj:`dict`): The training samples generated
"""
from copy import deepcopy
# data_one_step = deepcopy(get_nstep_return_data(data, 1, gamma=self._gamma))
data_one_step = deepcopy(data)
data = get_nstep_return_data(data, self._nstep, gamma=self._gamma)
for i in range(len(data)):
# here we record the one-step done, we don't need record one-step reward,
# because the n-step reward in data already include one-step reward
data[i]['done_one_step'] = data_one_step[i]['done']
return get_train_sample(data, self._unroll_len) # self._unroll_len_add_burnin_step
def _init_eval(self) -> None:
r"""
Overview:
Evaluate mode init method. Called by ``self.__init__``.
Init eval model with argmax strategy.
"""
self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample')
self._eval_model.reset()
def _forward_eval(self, data: dict) -> dict:
r"""
Overview:
Forward function for eval mode, similar to ``self._forward_collect``.
Arguments:
- data (:obj:`dict`): Dict type data, including at least ['obs'].
Returns:
- output (:obj:`dict`): Dict type data, including at least inferred action according to input obs.
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._eval_model.eval()
with torch.no_grad():
output = self._eval_model.forward(data, mode='compute_actor')
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _monitor_vars_learn(self) -> List[str]:
return super()._monitor_vars_learn() + [
'policy_loss', 'value_loss', 'entropy_loss', 'adv_abs_max', 'approx_kl', 'clipfrac'
]