Spaces:
Sleeping
Sleeping
from typing import List, Dict, Any | |
from easydict import EasyDict | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
import torch.nn.functional as F | |
from torch.distributions import Independent, Normal | |
from ding.utils import REWARD_MODEL_REGISTRY | |
from ding.utils.data import default_collate | |
from .base_reward_model import BaseRewardModel | |
class GuidedCostNN(nn.Module): | |
def __init__( | |
self, | |
input_size, | |
hidden_size=128, | |
output_size=1, | |
): | |
super(GuidedCostNN, self).__init__() | |
self.net = nn.Sequential( | |
nn.Linear(input_size, hidden_size), | |
nn.ReLU(), | |
nn.Linear(hidden_size, hidden_size), | |
nn.ReLU(), | |
nn.Linear(hidden_size, output_size), | |
) | |
def forward(self, x): | |
return self.net(x) | |
class GuidedCostRewardModel(BaseRewardModel): | |
""" | |
Overview: | |
Policy class of Guided cost algorithm. (https://arxiv.org/pdf/1603.00448.pdf) | |
Interface: | |
``estimate``, ``train``, ``collect_data``, ``clear_date``, \ | |
``__init__``, ``state_dict``, ``load_state_dict``, ``learn``\ | |
``state_dict_reward_model``, ``load_state_dict_reward_model`` | |
Config: | |
== ==================== ======== ============= ======================================== ================ | |
ID Symbol Type Default Value Description Other(Shape) | |
== ==================== ======== ============= ======================================== ================ | |
1 ``type`` str guided_cost | Reward model register name, refer | | |
| to registry ``REWARD_MODEL_REGISTRY`` | | |
2 | ``continuous`` bool True | Whether action is continuous | | |
3 | ``learning_rate`` float 0.001 | learning rate for optimizer | | |
4 | ``update_per_`` int 100 | Number of updates per collect | | |
| ``collect`` | | | |
5 | ``batch_size`` int 64 | Training batch size | | |
6 | ``hidden_size`` int 128 | Linear model hidden size | | |
7 | ``action_shape`` int 1 | Action space shape | | |
8 | ``log_every_n`` int 50 | add loss to log every n iteration | | |
| ``_train`` | | | |
9 | ``store_model_`` int 100 | save model every n iteration | | |
| ``every_n_train`` | | |
== ==================== ======== ============= ======================================== ================ | |
""" | |
config = dict( | |
# (str) Reward model register name, refer to registry ``REWARD_MODEL_REGISTRY``. | |
type='guided_cost', | |
# (float) The step size of gradient descent. | |
learning_rate=1e-3, | |
# (int) Action space shape, such as 1. | |
action_shape=1, | |
# (bool) Whether action is continuous. | |
continuous=True, | |
# (int) How many samples in a training batch. | |
batch_size=64, | |
# (int) Linear model hidden size. | |
hidden_size=128, | |
# (int) How many updates(iterations) to train after collector's one collection. | |
# Bigger "update_per_collect" means bigger off-policy. | |
# collect data -> update policy-> collect data -> ... | |
update_per_collect=100, | |
# (int) Add loss to log every n iteration. | |
log_every_n_train=50, | |
# (int) Save model every n iteration. | |
store_model_every_n_train=100, | |
) | |
def __init__(self, config: EasyDict, device: str, tb_logger: 'SummaryWriter') -> None: # noqa | |
super(GuidedCostRewardModel, self).__init__() | |
self.cfg = config | |
self.action_shape = self.cfg.action_shape | |
assert device == "cpu" or device.startswith("cuda") | |
self.device = device | |
self.tb_logger = tb_logger | |
self.reward_model = GuidedCostNN(config.input_size, config.hidden_size) | |
self.reward_model.to(self.device) | |
self.opt = optim.Adam(self.reward_model.parameters(), lr=config.learning_rate) | |
def train(self, expert_demo: torch.Tensor, samp: torch.Tensor, iter, step): | |
device_0 = expert_demo[0]['obs'].device | |
device_1 = samp[0]['obs'].device | |
for i in range(len(expert_demo)): | |
expert_demo[i]['prob'] = torch.FloatTensor([1]).to(device_0) | |
if self.cfg.continuous: | |
for i in range(len(samp)): | |
(mu, sigma) = samp[i]['logit'] | |
dist = Independent(Normal(mu, sigma), 1) | |
next_action = samp[i]['action'] | |
log_prob = dist.log_prob(next_action) | |
samp[i]['prob'] = torch.exp(log_prob).unsqueeze(0).to(device_1) | |
else: | |
for i in range(len(samp)): | |
probs = F.softmax(samp[i]['logit'], dim=-1) | |
prob = probs[samp[i]['action']] | |
samp[i]['prob'] = prob.to(device_1) | |
# Mix the expert data and sample data to train the reward model. | |
samp.extend(expert_demo) | |
expert_demo = default_collate(expert_demo) | |
samp = default_collate(samp) | |
cost_demo = self.reward_model( | |
torch.cat([expert_demo['obs'], expert_demo['action'].float().reshape(-1, self.action_shape)], dim=-1) | |
) | |
cost_samp = self.reward_model( | |
torch.cat([samp['obs'], samp['action'].float().reshape(-1, self.action_shape)], dim=-1) | |
) | |
prob = samp['prob'].unsqueeze(-1) | |
loss_IOC = torch.mean(cost_demo) + \ | |
torch.log(torch.mean(torch.exp(-cost_samp)/(prob+1e-7))) | |
# UPDATING THE COST FUNCTION | |
self.opt.zero_grad() | |
loss_IOC.backward() | |
self.opt.step() | |
if iter % self.cfg.log_every_n_train == 0: | |
self.tb_logger.add_scalar('reward_model/loss_iter', loss_IOC, iter) | |
self.tb_logger.add_scalar('reward_model/loss_step', loss_IOC, step) | |
def estimate(self, data: list) -> List[Dict]: | |
# NOTE: this estimate method of gcl alg. is a little different from the one in other irl alg., | |
# because its deepcopy is operated before learner train loop. | |
train_data_augmented = data | |
for i in range(len(train_data_augmented)): | |
with torch.no_grad(): | |
reward = self.reward_model( | |
torch.cat([train_data_augmented[i]['obs'], train_data_augmented[i]['action'].float()]).unsqueeze(0) | |
).squeeze(0) | |
train_data_augmented[i]['reward'] = -reward | |
return train_data_augmented | |
def collect_data(self, data) -> None: | |
""" | |
Overview: | |
Collecting training data, not implemented if reward model (i.e. online_net) is only trained ones, \ | |
if online_net is trained continuously, there should be some implementations in collect_data method | |
""" | |
# if online_net is trained continuously, there should be some implementations in collect_data method | |
pass | |
def clear_data(self): | |
""" | |
Overview: | |
Collecting clearing data, not implemented if reward model (i.e. online_net) is only trained ones, \ | |
if online_net is trained continuously, there should be some implementations in clear_data method | |
""" | |
# if online_net is trained continuously, there should be some implementations in clear_data method | |
pass | |
def state_dict_reward_model(self) -> Dict[str, Any]: | |
return { | |
'model': self.reward_model.state_dict(), | |
'optimizer': self.opt.state_dict(), | |
} | |
def load_state_dict_reward_model(self, state_dict: Dict[str, Any]) -> None: | |
self.reward_model.load_state_dict(state_dict['model']) | |
self.opt.load_state_dict(state_dict['optimizer']) | |