Spaces:
Sleeping
Sleeping
from typing import Union, Tuple, List, Dict | |
from easydict import EasyDict | |
import random | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
from ding.utils import SequenceType, REWARD_MODEL_REGISTRY | |
from ding.model import FCEncoder, ConvEncoder | |
from ding.torch_utils import one_hot | |
from .base_reward_model import BaseRewardModel | |
def collect_states(iterator: list) -> Tuple[list, list, list]: | |
states = [] | |
next_states = [] | |
actions = [] | |
for item in iterator: | |
state = item['obs'] | |
next_state = item['next_obs'] | |
action = item['action'] | |
states.append(state) | |
next_states.append(next_state) | |
actions.append(action) | |
return states, next_states, actions | |
class ICMNetwork(nn.Module): | |
""" | |
Intrinsic Curiosity Model (ICM Module) | |
Implementation of: | |
[1] Curiosity-driven Exploration by Self-supervised Prediction | |
Pathak, Agrawal, Efros, and Darrell - UC Berkeley - ICML 2017. | |
https://arxiv.org/pdf/1705.05363.pdf | |
[2] Code implementation reference: | |
https://github.com/pathak22/noreward-rl | |
https://github.com/jcwleo/curiosity-driven-exploration-pytorch | |
1) Embedding observations into a latent space | |
2) Predicting the action logit given two consecutive embedded observations | |
3) Predicting the next embedded obs, given the embeded former observation and action | |
""" | |
def __init__(self, obs_shape: Union[int, SequenceType], hidden_size_list: SequenceType, action_shape: int) -> None: | |
super(ICMNetwork, self).__init__() | |
if isinstance(obs_shape, int) or len(obs_shape) == 1: | |
self.feature = FCEncoder(obs_shape, hidden_size_list) | |
elif len(obs_shape) == 3: | |
self.feature = ConvEncoder(obs_shape, hidden_size_list) | |
else: | |
raise KeyError( | |
"not support obs_shape for pre-defined encoder: {}, please customize your own ICM model". | |
format(obs_shape) | |
) | |
self.action_shape = action_shape | |
feature_output = hidden_size_list[-1] | |
self.inverse_net = nn.Sequential(nn.Linear(feature_output * 2, 512), nn.ReLU(), nn.Linear(512, action_shape)) | |
self.residual = nn.ModuleList( | |
[ | |
nn.Sequential( | |
nn.Linear(action_shape + 512, 512), | |
nn.LeakyReLU(), | |
nn.Linear(512, 512), | |
) for _ in range(8) | |
] | |
) | |
self.forward_net_1 = nn.Sequential(nn.Linear(action_shape + feature_output, 512), nn.LeakyReLU()) | |
self.forward_net_2 = nn.Linear(action_shape + 512, feature_output) | |
def forward(self, state: torch.Tensor, next_state: torch.Tensor, | |
action_long: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
r""" | |
Overview: | |
Use observation, next_observation and action to genearte ICM module | |
Parameter updates with ICMNetwork forward setup. | |
Arguments: | |
- state (:obj:`torch.Tensor`): | |
The current state batch | |
- next_state (:obj:`torch.Tensor`): | |
The next state batch | |
- action_long (:obj:`torch.Tensor`): | |
The action batch | |
Returns: | |
- real_next_state_feature (:obj:`torch.Tensor`): | |
Run with the encoder. Return the real next_state's embedded feature. | |
- pred_next_state_feature (:obj:`torch.Tensor`): | |
Run with the encoder and residual network. Return the predicted next_state's embedded feature. | |
- pred_action_logit (:obj:`torch.Tensor`): | |
Run with the encoder. Return the predicted action logit. | |
Shapes: | |
- state (:obj:`torch.Tensor`): :math:`(B, N)`, where B is the batch size and N is ''obs_shape'' | |
- next_state (:obj:`torch.Tensor`): :math:`(B, N)`, where B is the batch size and N is ''obs_shape'' | |
- action_long (:obj:`torch.Tensor`): :math:`(B)`, where B is the batch size'' | |
- real_next_state_feature (:obj:`torch.Tensor`): :math:`(B, M)`, where B is the batch size | |
and M is embedded feature size | |
- pred_next_state_feature (:obj:`torch.Tensor`): :math:`(B, M)`, where B is the batch size | |
and M is embedded feature size | |
- pred_action_logit (:obj:`torch.Tensor`): :math:`(B, A)`, where B is the batch size | |
and A is the ''action_shape'' | |
""" | |
action = one_hot(action_long, num=self.action_shape) | |
encode_state = self.feature(state) | |
encode_next_state = self.feature(next_state) | |
# get pred action logit | |
concat_state = torch.cat((encode_state, encode_next_state), 1) | |
pred_action_logit = self.inverse_net(concat_state) | |
# --------------------- | |
# get pred next state | |
pred_next_state_feature_orig = torch.cat((encode_state, action), 1) | |
pred_next_state_feature_orig = self.forward_net_1(pred_next_state_feature_orig) | |
# residual | |
for i in range(4): | |
pred_next_state_feature = self.residual[i * 2](torch.cat((pred_next_state_feature_orig, action), 1)) | |
pred_next_state_feature_orig = self.residual[i * 2 + 1]( | |
torch.cat((pred_next_state_feature, action), 1) | |
) + pred_next_state_feature_orig | |
pred_next_state_feature = self.forward_net_2(torch.cat((pred_next_state_feature_orig, action), 1)) | |
real_next_state_feature = encode_next_state | |
return real_next_state_feature, pred_next_state_feature, pred_action_logit | |
class ICMRewardModel(BaseRewardModel): | |
""" | |
Overview: | |
The ICM reward model class (https://arxiv.org/pdf/1705.05363.pdf) | |
Interface: | |
``estimate``, ``train``, ``collect_data``, ``clear_data``, \ | |
``__init__``, ``_train``, ``load_state_dict``, ``state_dict`` | |
Config: | |
== ==================== ======== ============= ==================================== ======================= | |
ID Symbol Type Default Value Description Other(Shape) | |
== ==================== ======== ============= ==================================== ======================= | |
1 ``type`` str icm | Reward model register name, | | |
| refer to registry | | |
| ``REWARD_MODEL_REGISTRY`` | | |
2 | ``intrinsic_`` str add | the intrinsic reward type | including add, new | |
| ``reward_type`` | | , or assign | |
3 | ``learning_rate`` float 0.001 | The step size of gradient descent | | |
4 | ``obs_shape`` Tuple( 6 | the observation shape | | |
[int, | |
list]) | |
5 | ``action_shape`` int 7 | the action space shape | | |
6 | ``batch_size`` int 64 | Training batch size | | |
7 | ``hidden`` list [64, 64, | the MLP layer shape | | |
| ``_size_list`` (int) 128] | | | |
8 | ``update_per_`` int 100 | Number of updates per collect | | |
| ``collect`` | | | |
9 | ``reverse_scale`` float 1 | the importance weight of the | | |
| forward and reverse loss | | |
10 | ``intrinsic_`` float 0.003 | the weight of intrinsic reward | r = w*r_i + r_e | |
``reward_weight`` | |
11 | ``extrinsic_`` bool True | Whether to normlize | |
``reward_norm`` | extrinsic reward | |
12 | ``extrinsic_`` int 1 | the upper bound of the reward | |
``reward_norm_max`` | normalization | |
13 | ``clear_buffer`` int 1 | clear buffer per fixed iters | make sure replay | |
``_per_iters`` | buffer's data count | |
| isn't too few. | |
| (code work in entry) | |
== ==================== ======== ============= ==================================== ======================= | |
""" | |
config = dict( | |
# (str) Reward model register name, refer to registry ``REWARD_MODEL_REGISTRY``. | |
type='icm', | |
# (str) The intrinsic reward type, including add, new, or assign. | |
intrinsic_reward_type='add', | |
# (float) The step size of gradient descent. | |
learning_rate=1e-3, | |
# (Tuple[int, list]), The observation shape. | |
obs_shape=6, | |
# (int) The action shape, support discrete action only in this version. | |
action_shape=7, | |
# (float) Batch size. | |
batch_size=64, | |
# (list) The MLP layer shape. | |
hidden_size_list=[64, 64, 128], | |
# (int) How many updates(iterations) to train after collector's one collection. | |
# Bigger "update_per_collect" means bigger off-policy. | |
# collect data -> update policy-> collect data -> ... | |
update_per_collect=100, | |
# (float) The importance weight of the forward and reverse loss. | |
reverse_scale=1, | |
# (float) The weight of intrinsic reward. | |
# r = intrinsic_reward_weight * r_i + r_e. | |
intrinsic_reward_weight=0.003, # 1/300 | |
# (bool) Whether to normlize extrinsic reward. | |
# Normalize the reward to [0, extrinsic_reward_norm_max]. | |
extrinsic_reward_norm=True, | |
# (int) The upper bound of the reward normalization. | |
extrinsic_reward_norm_max=1, | |
# (int) Clear buffer per fixed iters. | |
clear_buffer_per_iters=100, | |
) | |
def __init__(self, config: EasyDict, device: str, tb_logger: 'SummaryWriter') -> None: # noqa | |
super(ICMRewardModel, self).__init__() | |
self.cfg = config | |
assert device == "cpu" or device.startswith("cuda") | |
self.device = device | |
self.tb_logger = tb_logger | |
self.reward_model = ICMNetwork(config.obs_shape, config.hidden_size_list, config.action_shape) | |
self.reward_model.to(self.device) | |
self.intrinsic_reward_type = config.intrinsic_reward_type | |
assert self.intrinsic_reward_type in ['add', 'new', 'assign'] | |
self.train_data = [] | |
self.train_states = [] | |
self.train_next_states = [] | |
self.train_actions = [] | |
self.opt = optim.Adam(self.reward_model.parameters(), config.learning_rate) | |
self.ce = nn.CrossEntropyLoss(reduction="mean") | |
self.forward_mse = nn.MSELoss(reduction='none') | |
self.reverse_scale = config.reverse_scale | |
self.res = nn.Softmax(dim=-1) | |
self.estimate_cnt_icm = 0 | |
self.train_cnt_icm = 0 | |
def _train(self) -> None: | |
self.train_cnt_icm += 1 | |
train_data_list = [i for i in range(0, len(self.train_states))] | |
train_data_index = random.sample(train_data_list, self.cfg.batch_size) | |
data_states: list = [self.train_states[i] for i in train_data_index] | |
data_states: torch.Tensor = torch.stack(data_states).to(self.device) | |
data_next_states: list = [self.train_next_states[i] for i in train_data_index] | |
data_next_states: torch.Tensor = torch.stack(data_next_states).to(self.device) | |
data_actions: list = [self.train_actions[i] for i in train_data_index] | |
data_actions: torch.Tensor = torch.cat(data_actions).to(self.device) | |
real_next_state_feature, pred_next_state_feature, pred_action_logit = self.reward_model( | |
data_states, data_next_states, data_actions | |
) | |
inverse_loss = self.ce(pred_action_logit, data_actions.long()) | |
forward_loss = self.forward_mse(pred_next_state_feature, real_next_state_feature.detach()).mean() | |
self.tb_logger.add_scalar('icm_reward/forward_loss', forward_loss, self.train_cnt_icm) | |
self.tb_logger.add_scalar('icm_reward/inverse_loss', inverse_loss, self.train_cnt_icm) | |
action = torch.argmax(self.res(pred_action_logit), -1) | |
accuracy = torch.sum(action == data_actions.squeeze(-1)).item() / data_actions.shape[0] | |
self.tb_logger.add_scalar('icm_reward/action_accuracy', accuracy, self.train_cnt_icm) | |
loss = self.reverse_scale * inverse_loss + forward_loss | |
self.tb_logger.add_scalar('icm_reward/total_loss', loss, self.train_cnt_icm) | |
loss = self.reverse_scale * inverse_loss + forward_loss | |
self.opt.zero_grad() | |
loss.backward() | |
self.opt.step() | |
def train(self) -> None: | |
for _ in range(self.cfg.update_per_collect): | |
self._train() | |
def estimate(self, data: list) -> List[Dict]: | |
# NOTE: deepcopy reward part of data is very important, | |
# otherwise the reward of data in the replay buffer will be incorrectly modified. | |
train_data_augmented = self.reward_deepcopy(data) | |
states, next_states, actions = collect_states(train_data_augmented) | |
states = torch.stack(states).to(self.device) | |
next_states = torch.stack(next_states).to(self.device) | |
actions = torch.cat(actions).to(self.device) | |
with torch.no_grad(): | |
real_next_state_feature, pred_next_state_feature, _ = self.reward_model(states, next_states, actions) | |
raw_icm_reward = self.forward_mse(real_next_state_feature, pred_next_state_feature).mean(dim=1) | |
self.estimate_cnt_icm += 1 | |
self.tb_logger.add_scalar('icm_reward/raw_icm_reward_max', raw_icm_reward.max(), self.estimate_cnt_icm) | |
self.tb_logger.add_scalar('icm_reward/raw_icm_reward_mean', raw_icm_reward.mean(), self.estimate_cnt_icm) | |
self.tb_logger.add_scalar('icm_reward/raw_icm_reward_min', raw_icm_reward.min(), self.estimate_cnt_icm) | |
self.tb_logger.add_scalar('icm_reward/raw_icm_reward_std', raw_icm_reward.std(), self.estimate_cnt_icm) | |
icm_reward = (raw_icm_reward - raw_icm_reward.min()) / (raw_icm_reward.max() - raw_icm_reward.min() + 1e-8) | |
self.tb_logger.add_scalar('icm_reward/icm_reward_max', icm_reward.max(), self.estimate_cnt_icm) | |
self.tb_logger.add_scalar('icm_reward/icm_reward_mean', icm_reward.mean(), self.estimate_cnt_icm) | |
self.tb_logger.add_scalar('icm_reward/icm_reward_min', icm_reward.min(), self.estimate_cnt_icm) | |
self.tb_logger.add_scalar('icm_reward/icm_reward_std', icm_reward.std(), self.estimate_cnt_icm) | |
icm_reward = (raw_icm_reward - raw_icm_reward.min()) / (raw_icm_reward.max() - raw_icm_reward.min() + 1e-8) | |
icm_reward = icm_reward.to(self.device) | |
for item, icm_rew in zip(train_data_augmented, icm_reward): | |
if self.intrinsic_reward_type == 'add': | |
if self.cfg.extrinsic_reward_norm: | |
item['reward'] = item[ | |
'reward'] / self.cfg.extrinsic_reward_norm_max + icm_rew * self.cfg.intrinsic_reward_weight | |
else: | |
item['reward'] = item['reward'] + icm_rew * self.cfg.intrinsic_reward_weight | |
elif self.intrinsic_reward_type == 'new': | |
item['intrinsic_reward'] = icm_rew | |
if self.cfg.extrinsic_reward_norm: | |
item['reward'] = item['reward'] / self.cfg.extrinsic_reward_norm_max | |
elif self.intrinsic_reward_type == 'assign': | |
item['reward'] = icm_rew | |
return train_data_augmented | |
def collect_data(self, data: list) -> None: | |
self.train_data.extend(collect_states(data)) | |
states, next_states, actions = collect_states(data) | |
self.train_states.extend(states) | |
self.train_next_states.extend(next_states) | |
self.train_actions.extend(actions) | |
def clear_data(self) -> None: | |
self.train_data.clear() | |
self.train_states.clear() | |
self.train_next_states.clear() | |
self.train_actions.clear() | |
def state_dict(self) -> Dict: | |
return self.reward_model.state_dict() | |
def load_state_dict(self, _state_dict: Dict) -> None: | |
self.reward_model.load_state_dict(_state_dict) | |