Spaces:
Sleeping
Sleeping
from typing import List, Dict, Any, Optional | |
from collections import deque | |
import copy | |
import torch | |
from ding.utils import list_split, lists_to_dicts | |
from ding.rl_utils.gae import gae, gae_data | |
class Adder(object): | |
""" | |
Overview: | |
Adder is a component that handles different transformations and calculations for transitions | |
in Collector Module(data generation and processing), such as GAE, n-step return, transition sampling etc. | |
Interface: | |
__init__, get_gae, get_gae_with_default_last_value, get_nstep_return_data, get_train_sample | |
""" | |
def get_gae(cls, data: List[Dict[str, Any]], last_value: torch.Tensor, gamma: float, gae_lambda: float, | |
cuda: bool) -> List[Dict[str, Any]]: | |
""" | |
Overview: | |
Get GAE advantage for stacked transitions(T timestep, 1 batch). Call ``gae`` for calculation. | |
Arguments: | |
- data (:obj:`list`): Transitions list, each element is a transition dict with at least ['value', 'reward'] | |
- last_value (:obj:`torch.Tensor`): The last value(i.e.: the T+1 timestep) | |
- gamma (:obj:`float`): The future discount factor, should be in [0, 1], defaults to 0.99. | |
- gae_lambda (:obj:`float`): GAE lambda parameter, should be in [0, 1], defaults to 0.97, \ | |
when lambda -> 0, it induces bias, but when lambda -> 1, it has high variance due to the sum of terms. | |
- cuda (:obj:`bool`): Whether use cuda in GAE computation | |
Returns: | |
- data (:obj:`list`): transitions list like input one, but each element owns extra advantage key 'adv' | |
Examples: | |
>>> B, T = 2, 3 # batch_size, timestep | |
>>> data = [dict(value=torch.randn(B), reward=torch.randn(B)) for _ in range(T)] | |
>>> last_value = torch.randn(B) | |
>>> gamma = 0.99 | |
>>> gae_lambda = 0.95 | |
>>> cuda = False | |
>>> data = Adder.get_gae(data, last_value, gamma, gae_lambda, cuda) | |
""" | |
value = torch.stack([d['value'] for d in data]) | |
next_value = torch.stack([d['value'] for d in data][1:] + [last_value]) | |
reward = torch.stack([d['reward'] for d in data]) | |
if cuda: | |
value = value.cuda() | |
next_value = next_value.cuda() | |
reward = reward.cuda() | |
adv = gae(gae_data(value, next_value, reward, None, None), gamma, gae_lambda) | |
if cuda: | |
adv = adv.cpu() | |
for i in range(len(data)): | |
data[i]['adv'] = adv[i] | |
return data | |
def get_gae_with_default_last_value(cls, data: deque, done: bool, gamma: float, gae_lambda: float, | |
cuda: bool) -> List[Dict[str, Any]]: | |
""" | |
Overview: | |
Like ``get_gae`` above to get GAE advantage for stacked transitions. However, this function is designed in | |
case ``last_value`` is not passed. If transition is not done yet, it wouold assign last value in ``data`` | |
as ``last_value``, discard the last element in ``data``(i.e. len(data) would decrease by 1), and then call | |
``get_gae``. Otherwise it would make ``last_value`` equal to 0. | |
Arguments: | |
- data (:obj:`deque`): Transitions list, each element is a transition dict with \ | |
at least['value', 'reward'] | |
- done (:obj:`bool`): Whether the transition reaches the end of an episode(i.e. whether the env is done) | |
- gamma (:obj:`float`): The future discount factor, should be in [0, 1], defaults to 0.99. | |
- gae_lambda (:obj:`float`): GAE lambda parameter, should be in [0, 1], defaults to 0.97, \ | |
when lambda -> 0, it induces bias, but when lambda -> 1, it has high variance due to the sum of terms. | |
- cuda (:obj:`bool`): Whether use cuda in GAE computation | |
Returns: | |
- data (:obj:`List[Dict[str, Any]]`): transitions list like input one, but each element owns \ | |
extra advantage key 'adv' | |
Examples: | |
>>> B, T = 2, 3 # batch_size, timestep | |
>>> data = [dict(value=torch.randn(B), reward=torch.randn(B)) for _ in range(T)] | |
>>> done = False | |
>>> gamma = 0.99 | |
>>> gae_lambda = 0.95 | |
>>> cuda = False | |
>>> data = Adder.get_gae_with_default_last_value(data, done, gamma, gae_lambda, cuda) | |
""" | |
if done: | |
last_value = torch.zeros_like(data[-1]['value']) | |
else: | |
last_data = data.pop() | |
last_value = last_data['value'] | |
return cls.get_gae(data, last_value, gamma, gae_lambda, cuda) | |
def get_nstep_return_data( | |
cls, | |
data: deque, | |
nstep: int, | |
cum_reward=False, | |
correct_terminate_gamma=True, | |
gamma=0.99, | |
) -> deque: | |
""" | |
Overview: | |
Process raw traj data by updating keys ['next_obs', 'reward', 'done'] in data's dict element. | |
Arguments: | |
- data (:obj:`deque`): Transitions list, each element is a transition dict | |
- nstep (:obj:`int`): Number of steps. If equals to 1, return ``data`` directly; \ | |
Otherwise update with nstep value. | |
Returns: | |
- data (:obj:`deque`): Transitions list like input one, but each element updated with nstep value. | |
Examples: | |
>>> data = [dict( | |
>>> obs=torch.randn(B), | |
>>> reward=torch.randn(1), | |
>>> next_obs=torch.randn(B), | |
>>> done=False) for _ in range(T)] | |
>>> nstep = 2 | |
>>> data = Adder.get_nstep_return_data(data, nstep) | |
""" | |
if nstep == 1: | |
return data | |
fake_reward = torch.zeros(1) | |
next_obs_flag = 'next_obs' in data[0] | |
for i in range(len(data) - nstep): | |
# update keys ['next_obs', 'reward', 'done'] with their n-step value | |
if next_obs_flag: | |
data[i]['next_obs'] = data[i + nstep]['obs'] # do not need deepcopy | |
if cum_reward: | |
data[i]['reward'] = sum([data[i + j]['reward'] * (gamma ** j) for j in range(nstep)]) | |
else: | |
data[i]['reward'] = torch.cat([data[i + j]['reward'] for j in range(nstep)]) | |
data[i]['done'] = data[i + nstep - 1]['done'] | |
if correct_terminate_gamma: | |
data[i]['value_gamma'] = gamma ** nstep | |
for i in range(max(0, len(data) - nstep), len(data)): | |
if next_obs_flag: | |
data[i]['next_obs'] = data[-1]['next_obs'] # do not need deepcopy | |
if cum_reward: | |
data[i]['reward'] = sum([data[i + j]['reward'] * (gamma ** j) for j in range(len(data) - i)]) | |
else: | |
data[i]['reward'] = torch.cat( | |
[data[i + j]['reward'] | |
for j in range(len(data) - i)] + [fake_reward for _ in range(nstep - (len(data) - i))] | |
) | |
data[i]['done'] = data[-1]['done'] | |
if correct_terminate_gamma: | |
data[i]['value_gamma'] = gamma ** (len(data) - i - 1) | |
return data | |
def get_train_sample( | |
cls, | |
data: List[Dict[str, Any]], | |
unroll_len: int, | |
last_fn_type: str = 'last', | |
null_transition: Optional[dict] = None | |
) -> List[Dict[str, Any]]: | |
""" | |
Overview: | |
Process raw traj data by updating keys ['next_obs', 'reward', 'done'] in data's dict element. | |
If ``unroll_len`` equals to 1, which means no process is needed, can directly return ``data``. | |
Otherwise, ``data`` will be splitted according to ``unroll_len``, process residual part according to | |
``last_fn_type`` and call ``lists_to_dicts`` to form sampled training data. | |
Arguments: | |
- data (:obj:`List[Dict[str, Any]]`): Transitions list, each element is a transition dict | |
- unroll_len (:obj:`int`): Learn training unroll length | |
- last_fn_type (:obj:`str`): The method type name for dealing with last residual data in a traj \ | |
after splitting, should be in ['last', 'drop', 'null_padding'] | |
- null_transition (:obj:`Optional[dict]`): Dict type null transition, used in ``null_padding`` | |
Returns: | |
- data (:obj:`List[Dict[str, Any]]`): Transitions list processed after unrolling | |
""" | |
if unroll_len == 1: | |
return data | |
else: | |
# cut data into pieces whose length is unroll_len | |
split_data, residual = list_split(data, step=unroll_len) | |
def null_padding(): | |
template = copy.deepcopy(residual[0]) | |
template['null'] = True | |
if isinstance(template['obs'], dict): | |
template['obs'] = {k: torch.zeros_like(v) for k, v in template['obs'].items()} | |
else: | |
template['obs'] = torch.zeros_like(template['obs']) | |
if 'action' in template: | |
template['action'] = torch.zeros_like(template['action']) | |
template['done'] = True | |
template['reward'] = torch.zeros_like(template['reward']) | |
if 'value_gamma' in template: | |
template['value_gamma'] = 0. | |
null_data = [cls._get_null_transition(template, null_transition) for _ in range(miss_num)] | |
return null_data | |
if residual is not None: | |
miss_num = unroll_len - len(residual) | |
if last_fn_type == 'drop': | |
# drop the residual part | |
pass | |
elif last_fn_type == 'last': | |
if len(split_data) > 0: | |
# copy last datas from split_data's last element, and insert in front of residual | |
last_data = copy.deepcopy(split_data[-1][-miss_num:]) | |
split_data.append(last_data + residual) | |
else: | |
# get null transitions using ``null_padding``, and insert behind residual | |
null_data = null_padding() | |
split_data.append(residual + null_data) | |
elif last_fn_type == 'null_padding': | |
# same to the case of 'last' type and split_data is empty | |
null_data = null_padding() | |
split_data.append(residual + null_data) | |
# collate unroll_len dicts according to keys | |
if len(split_data) > 0: | |
split_data = [lists_to_dicts(d, recursive=True) for d in split_data] | |
return split_data | |
def _get_null_transition(cls, template: dict, null_transition: Optional[dict] = None) -> dict: | |
""" | |
Overview: | |
Get null transition for padding. If ``cls._null_transition`` is None, return input ``template`` instead. | |
Arguments: | |
- template (:obj:`dict`): The template for null transition. | |
- null_transition (:obj:`Optional[dict]`): Dict type null transition, used in ``null_padding`` | |
Returns: | |
- null_transition (:obj:`dict`): The deepcopied null transition. | |
""" | |
if null_transition is not None: | |
return copy.deepcopy(null_transition) | |
else: | |
return copy.deepcopy(template) | |
get_gae = Adder.get_gae | |
get_gae_with_default_last_value = Adder.get_gae_with_default_last_value | |
get_nstep_return_data = Adder.get_nstep_return_data | |
get_train_sample = Adder.get_train_sample | |