Spaces:
Sleeping
Sleeping
from collections import namedtuple | |
import torch | |
import torch.nn.functional as F | |
from ding.rl_utils.td import generalized_lambda_returns | |
coma_data = namedtuple('coma_data', ['logit', 'action', 'q_value', 'target_q_value', 'reward', 'weight']) | |
coma_loss = namedtuple('coma_loss', ['policy_loss', 'q_value_loss', 'entropy_loss']) | |
def coma_error(data: namedtuple, gamma: float, lambda_: float) -> namedtuple: | |
""" | |
Overview: | |
Implementation of COMA | |
Arguments: | |
- data (:obj:`namedtuple`): coma input data with fieids shown in ``coma_data`` | |
Returns: | |
- coma_loss (:obj:`namedtuple`): the coma loss item, all of them are the differentiable 0-dim tensor | |
Shapes: | |
- logit (:obj:`torch.FloatTensor`): :math:`(T, B, A, N)`, where B is batch size A is the agent num, and N is \ | |
action dim | |
- action (:obj:`torch.LongTensor`): :math:`(T, B, A)` | |
- q_value (:obj:`torch.FloatTensor`): :math:`(T, B, A, N)` | |
- target_q_value (:obj:`torch.FloatTensor`): :math:`(T, B, A, N)` | |
- reward (:obj:`torch.FloatTensor`): :math:`(T, B)` | |
- weight (:obj:`torch.FloatTensor` or :obj:`None`): :math:`(T ,B, A)` | |
- policy_loss (:obj:`torch.FloatTensor`): :math:`()`, 0-dim tensor | |
- value_loss (:obj:`torch.FloatTensor`): :math:`()` | |
- entropy_loss (:obj:`torch.FloatTensor`): :math:`()` | |
Examples: | |
>>> action_dim = 4 | |
>>> agent_num = 3 | |
>>> data = coma_data( | |
>>> logit=torch.randn(2, 3, agent_num, action_dim), | |
>>> action=torch.randint(0, action_dim, (2, 3, agent_num)), | |
>>> q_value=torch.randn(2, 3, agent_num, action_dim), | |
>>> target_q_value=torch.randn(2, 3, agent_num, action_dim), | |
>>> reward=torch.randn(2, 3), | |
>>> weight=torch.ones(2, 3, agent_num), | |
>>> ) | |
>>> loss = coma_error(data, 0.99, 0.99) | |
""" | |
logit, action, q_value, target_q_value, reward, weight = data | |
if weight is None: | |
weight = torch.ones_like(action) | |
q_taken = torch.gather(q_value, -1, index=action.unsqueeze(-1)).squeeze(-1) | |
target_q_taken = torch.gather(target_q_value, -1, index=action.unsqueeze(-1)).squeeze(-1) | |
T, B, A = target_q_taken.shape | |
reward = reward.unsqueeze(-1).expand_as(target_q_taken).reshape(T, -1) | |
target_q_taken = target_q_taken.reshape(T, -1) | |
return_ = generalized_lambda_returns(target_q_taken, reward[:-1], gamma, lambda_) | |
return_ = return_.reshape(T - 1, B, A) | |
q_value_loss = (F.mse_loss(return_, q_taken[:-1], reduction='none') * weight[:-1]).mean() | |
dist = torch.distributions.categorical.Categorical(logits=logit) | |
logp = dist.log_prob(action) | |
baseline = (torch.softmax(logit, dim=-1) * q_value).sum(-1).detach() | |
adv = (q_taken - baseline).detach() | |
entropy_loss = (dist.entropy() * weight).mean() | |
policy_loss = -(logp * adv * weight).mean() | |
return coma_loss(policy_loss, q_value_loss, entropy_loss) | |