Spaces:
Sleeping
Sleeping
import math | |
from abc import ABC, abstractmethod | |
from typing import Callable, Union, Optional | |
from copy import deepcopy | |
from ding.torch_utils.data_helper import to_device | |
import torch | |
def get_epsilon_greedy_fn(start: float, end: float, decay: int, type_: str = 'exp') -> Callable: | |
""" | |
Overview: | |
Generate an epsilon_greedy function with decay, which inputs current timestep and outputs current epsilon. | |
Arguments: | |
- start (:obj:`float`): Epsilon start value. For 'linear', it should be 1.0. | |
- end (:obj:`float`): Epsilon end value. | |
- decay (:obj:`int`): Controls the speed that epsilon decreases from ``start`` to ``end``. \ | |
We recommend epsilon decays according to env step rather than iteration. | |
- type (:obj:`str`): How epsilon decays, now supports ['linear', 'exp'(exponential)] | |
Returns: | |
- eps_fn (:obj:`function`): The epsilon greedy function with decay | |
""" | |
assert type_ in ['linear', 'exp'], type_ | |
if type_ == 'exp': | |
return lambda x: (start - end) * math.exp(-1 * x / decay) + end | |
elif type_ == 'linear': | |
def eps_fn(x): | |
if x >= decay: | |
return end | |
else: | |
return (start - end) * (1 - x / decay) + end | |
return eps_fn | |
class BaseNoise(ABC): | |
r""" | |
Overview: | |
Base class for action noise | |
Interface: | |
__init__, __call__ | |
Examples: | |
>>> noise_generator = OUNoise() # init one type of noise | |
>>> noise = noise_generator(action.shape, action.device) # generate noise | |
""" | |
def __init__(self) -> None: | |
""" | |
Overview: | |
Initialization method | |
""" | |
super().__init__() | |
def __call__(self, shape: tuple, device: str) -> torch.Tensor: | |
""" | |
Overview: | |
Generate noise according to action tensor's shape, device | |
Arguments: | |
- shape (:obj:`tuple`): size of the action tensor, output noise's size should be the same | |
- device (:obj:`str`): device of the action tensor, output noise's device should be the same as it | |
Returns: | |
- noise (:obj:`torch.Tensor`): generated action noise, \ | |
have the same shape and device with the input action tensor | |
""" | |
raise NotImplementedError | |
class GaussianNoise(BaseNoise): | |
r""" | |
Overview: | |
Derived class for generating gaussian noise, which satisfies :math:`X \sim N(\mu, \sigma^2)` | |
Interface: | |
__init__, __call__ | |
""" | |
def __init__(self, mu: float = 0.0, sigma: float = 1.0) -> None: | |
""" | |
Overview: | |
Initialize :math:`\mu` and :math:`\sigma` in Gaussian Distribution | |
Arguments: | |
- mu (:obj:`float`): :math:`\mu` , mean value | |
- sigma (:obj:`float`): :math:`\sigma` , standard deviation, should be positive | |
""" | |
super(GaussianNoise, self).__init__() | |
self._mu = mu | |
assert sigma >= 0, "GaussianNoise's sigma should be positive." | |
self._sigma = sigma | |
def __call__(self, shape: tuple, device: str) -> torch.Tensor: | |
""" | |
Overview: | |
Generate gaussian noise according to action tensor's shape, device | |
Arguments: | |
- shape (:obj:`tuple`): size of the action tensor, output noise's size should be the same | |
- device (:obj:`str`): device of the action tensor, output noise's device should be the same as it | |
Returns: | |
- noise (:obj:`torch.Tensor`): generated action noise, \ | |
have the same shape and device with the input action tensor | |
""" | |
noise = torch.randn(shape, device=device) | |
noise = noise * self._sigma + self._mu | |
return noise | |
class OUNoise(BaseNoise): | |
r""" | |
Overview: | |
Derived class for generating Ornstein-Uhlenbeck process noise. | |
Satisfies :math:`dx_t=\theta(\mu-x_t)dt + \sigma dW_t`, | |
where :math:`W_t` denotes Weiner Process, acting as a random perturbation term. | |
Interface: | |
__init__, reset, __call__ | |
""" | |
def __init__( | |
self, | |
mu: float = 0.0, | |
sigma: float = 0.3, | |
theta: float = 0.15, | |
dt: float = 1e-2, | |
x0: Optional[Union[float, torch.Tensor]] = 0.0, | |
) -> None: | |
""" | |
Overview: | |
Initialize ``_alpha`` :math:`=\theta * dt\`, | |
``beta`` :math:`= \sigma * \sqrt{dt}`, in Ornstein-Uhlenbeck process | |
Arguments: | |
- mu (:obj:`float`): :math:`\mu` , mean value | |
- sigma (:obj:`float`): :math:`\sigma` , standard deviation of the perturbation noise | |
- theta (:obj:`float`): how strongly the noise reacts to perturbations, \ | |
greater value means stronger reaction | |
- dt (:obj:`float`): derivative of time t | |
- x0 (:obj:`float` or :obj:`torch.Tensor`): initial action | |
""" | |
super().__init__() | |
self._mu = mu | |
self._alpha = theta * dt | |
self._beta = sigma * math.sqrt(dt) | |
self._x0 = x0 | |
self.reset() | |
def reset(self) -> None: | |
""" | |
Overview: | |
Reset ``_x`` to the initial state ``_x0`` | |
""" | |
self._x = deepcopy(self._x0) | |
def __call__(self, shape: tuple, device: str, mu: Optional[float] = None) -> torch.Tensor: | |
""" | |
Overview: | |
Generate gaussian noise according to action tensor's shape, device | |
Arguments: | |
- shape (:obj:`tuple`): size of the action tensor, output noise's size should be the same | |
- device (:obj:`str`): device of the action tensor, output noise's device should be the same as it | |
- mu (:obj:`float`): new mean value :math:`\mu`, you can set it to `None` if don't need it | |
Returns: | |
- noise (:obj:`torch.Tensor`): generated action noise, \ | |
have the same shape and device with the input action tensor | |
""" | |
if self._x is None or \ | |
(isinstance(self._x, torch.Tensor) and self._x.shape != shape): | |
self._x = torch.zeros(shape) | |
if mu is None: | |
mu = self._mu | |
noise = self._alpha * (mu - self._x) + self._beta * torch.randn(shape) | |
self._x += noise | |
noise = to_device(noise, device) | |
return noise | |
def x0(self) -> Union[float, torch.Tensor]: | |
""" | |
Overview: | |
Get ``self._x0`` | |
""" | |
return self._x0 | |
def x0(self, _x0: Union[float, torch.Tensor]) -> None: | |
""" | |
Overview: | |
Set ``self._x0`` and reset ``self.x`` to ``self._x0`` as well | |
""" | |
self._x0 = _x0 | |
self.reset() | |
noise_mapping = {'gauss': GaussianNoise, 'ou': OUNoise} | |
def create_noise_generator(noise_type: str, noise_kwargs: dict) -> BaseNoise: | |
""" | |
Overview: | |
Given the key (noise_type), create a new noise generator instance if in noise_mapping's values, | |
or raise an KeyError. In other words, a derived noise generator must first register, | |
then call ``create_noise generator`` to get the instance object. | |
Arguments: | |
- noise_type (:obj:`str`): the type of noise generator to be created | |
Returns: | |
- noise (:obj:`BaseNoise`): the created new noise generator, should be an instance of one of \ | |
noise_mapping's values | |
""" | |
if noise_type not in noise_mapping.keys(): | |
raise KeyError("not support noise type: {}".format(noise_type)) | |
else: | |
return noise_mapping[noise_type](**noise_kwargs) | |