Spaces:
Sleeping
Sleeping
from typing import Union | |
import torch | |
from torch.distributions import Categorical, Independent, Normal | |
def compute_importance_weights( | |
target_output: Union[torch.Tensor, dict], | |
behaviour_output: Union[torch.Tensor, dict], | |
action: torch.Tensor, | |
action_space_type: str = 'discrete', | |
requires_grad: bool = False | |
): | |
""" | |
Overview: | |
Computing importance sampling weight with given output and action | |
Arguments: | |
- target_output (:obj:`Union[torch.Tensor,dict]`): the output taking the action \ | |
by the current policy network, \ | |
usually this output is network output logit if action space is discrete, \ | |
or is a dict containing parameters of action distribution if action space is continuous. | |
- behaviour_output (:obj:`Union[torch.Tensor,dict]`): the output taking the action \ | |
by the behaviour policy network,\ | |
usually this output is network output logit, if action space is discrete, \ | |
or is a dict containing parameters of action distribution if action space is continuous. | |
- action (:obj:`torch.Tensor`): the chosen action(index for the discrete action space) in trajectory,\ | |
i.e.: behaviour_action | |
- action_space_type (:obj:`str`): action space types in ['discrete', 'continuous'] | |
- requires_grad (:obj:`bool`): whether requires grad computation | |
Returns: | |
- rhos (:obj:`torch.Tensor`): Importance sampling weight | |
Shapes: | |
- target_output (:obj:`Union[torch.FloatTensor,dict]`): :math:`(T, B, N)`, \ | |
where T is timestep, B is batch size and N is action dim | |
- behaviour_output (:obj:`Union[torch.FloatTensor,dict]`): :math:`(T, B, N)` | |
- action (:obj:`torch.LongTensor`): :math:`(T, B)` | |
- rhos (:obj:`torch.FloatTensor`): :math:`(T, B)` | |
Examples: | |
>>> target_output = torch.randn(2, 3, 4) | |
>>> behaviour_output = torch.randn(2, 3, 4) | |
>>> action = torch.randint(0, 4, (2, 3)) | |
>>> rhos = compute_importance_weights(target_output, behaviour_output, action) | |
""" | |
grad_context = torch.enable_grad() if requires_grad else torch.no_grad() | |
assert isinstance(action, torch.Tensor) | |
assert action_space_type in ['discrete', 'continuous'] | |
with grad_context: | |
if action_space_type == 'continuous': | |
dist_target = Independent(Normal(loc=target_output['mu'], scale=target_output['sigma']), 1) | |
dist_behaviour = Independent(Normal(loc=behaviour_output['mu'], scale=behaviour_output['sigma']), 1) | |
rhos = dist_target.log_prob(action) - dist_behaviour.log_prob(action) | |
rhos = torch.exp(rhos) | |
return rhos | |
elif action_space_type == 'discrete': | |
dist_target = Categorical(logits=target_output) | |
dist_behaviour = Categorical(logits=behaviour_output) | |
rhos = dist_target.log_prob(action) - dist_behaviour.log_prob(action) | |
rhos = torch.exp(rhos) | |
return rhos | |