Spaces:
Sleeping
Sleeping
from typing import Tuple | |
from collections import namedtuple | |
import torch | |
import torch.nn.functional as F | |
ppg_data = namedtuple('ppg_data', ['logit_new', 'logit_old', 'action', 'value_new', 'value_old', 'return_', 'weight']) | |
ppg_joint_loss = namedtuple('ppg_joint_loss', ['auxiliary_loss', 'behavioral_cloning_loss']) | |
def ppg_joint_error( | |
data: namedtuple, | |
clip_ratio: float = 0.2, | |
use_value_clip: bool = True, | |
) -> Tuple[namedtuple, namedtuple]: | |
''' | |
Overview: | |
Get PPG joint loss | |
Arguments: | |
- data (:obj:`namedtuple`): ppg input data with fieids shown in ``ppg_data`` | |
- clip_ratio (:obj:`float`): clip value for ratio | |
- use_value_clip (:obj:`bool`): whether use value clip | |
Returns: | |
- ppg_joint_loss (:obj:`namedtuple`): the ppg loss item, all of them are the differentiable 0-dim tensor | |
Shapes: | |
- logit_new (:obj:`torch.FloatTensor`): :math:`(B, N)`, where B is batch size and N is action dim | |
- logit_old (:obj:`torch.FloatTensor`): :math:`(B, N)` | |
- action (:obj:`torch.LongTensor`): :math:`(B,)` | |
- value_new (:obj:`torch.FloatTensor`): :math:`(B, 1)` | |
- value_old (:obj:`torch.FloatTensor`): :math:`(B, 1)` | |
- return (:obj:`torch.FloatTensor`): :math:`(B, 1)` | |
- weight (:obj:`torch.FloatTensor`): :math:`(B,)` | |
- auxiliary_loss (:obj:`torch.FloatTensor`): :math:`()`, 0-dim tensor | |
- behavioral_cloning_loss (:obj:`torch.FloatTensor`): :math:`()` | |
Examples: | |
>>> action_dim = 4 | |
>>> data = ppg_data( | |
>>> logit_new=torch.randn(3, action_dim), | |
>>> logit_old=torch.randn(3, action_dim), | |
>>> action=torch.randint(0, action_dim, (3,)), | |
>>> value_new=torch.randn(3, 1), | |
>>> value_old=torch.randn(3, 1), | |
>>> return_=torch.randn(3, 1), | |
>>> weight=torch.ones(3), | |
>>> ) | |
>>> loss = ppg_joint_error(data, 0.99, 0.99) | |
''' | |
logit_new, logit_old, action, value_new, value_old, return_, weight = data | |
if weight is None: | |
weight = torch.ones_like(return_) | |
# auxiliary_loss | |
if use_value_clip: | |
value_clip = value_old + (value_new - value_old).clamp(-clip_ratio, clip_ratio) | |
v1 = (return_ - value_new).pow(2) | |
v2 = (return_ - value_clip).pow(2) | |
auxiliary_loss = 0.5 * (torch.max(v1, v2) * weight).mean() | |
else: | |
auxiliary_loss = 0.5 * ((return_ - value_new).pow(2) * weight).mean() | |
dist_new = torch.distributions.categorical.Categorical(logits=logit_new) | |
dist_old = torch.distributions.categorical.Categorical(logits=logit_old) | |
logp_new = dist_new.log_prob(action) | |
logp_old = dist_old.log_prob(action) | |
# behavioral cloning loss | |
behavioral_cloning_loss = F.kl_div(logp_new, logp_old, reduction='batchmean') | |
return ppg_joint_loss(auxiliary_loss, behavioral_cloning_loss) | |