Spaces:
Sleeping
Sleeping
from collections import namedtuple | |
from typing import Optional, Tuple | |
import torch | |
import torch.nn as nn | |
from torch.distributions import Independent, Normal | |
from ding.hpc_rl import hpc_wrapper | |
ppo_data = namedtuple( | |
'ppo_data', ['logit_new', 'logit_old', 'action', 'value_new', 'value_old', 'adv', 'return_', 'weight'] | |
) | |
ppo_data_continuous = namedtuple( | |
'ppo_data_continuous', | |
['mu_sigma_new', 'mu_sigma_old', 'action', 'value_new', 'value_old', 'adv', 'return_', 'weight'] | |
) | |
ppo_policy_data = namedtuple('ppo_policy_data', ['logit_new', 'logit_old', 'action', 'adv', 'weight']) | |
ppo_policy_data_continuous = namedtuple( | |
'ppo_policy_data_continuous', ['mu_sigma_new', 'mu_sigma_old', 'action', 'adv', 'weight'] | |
) | |
ppo_value_data = namedtuple('ppo_value_data', ['value_new', 'value_old', 'return_', 'weight']) | |
ppo_loss = namedtuple('ppo_loss', ['policy_loss', 'value_loss', 'entropy_loss']) | |
ppo_policy_loss = namedtuple('ppo_policy_loss', ['policy_loss', 'entropy_loss']) | |
ppo_info = namedtuple('ppo_info', ['approx_kl', 'clipfrac']) | |
def shape_fn_ppo(args, kwargs): | |
r""" | |
Overview: | |
Return shape of ppo for hpc | |
Returns: | |
shape: [B, N] | |
""" | |
if len(args) <= 0: | |
tmp = kwargs['data'].logit_new.shape | |
else: | |
tmp = args[0].logit_new.shape | |
return tmp | |
def ppo_error( | |
data: namedtuple, | |
clip_ratio: float = 0.2, | |
use_value_clip: bool = True, | |
dual_clip: Optional[float] = None | |
) -> Tuple[namedtuple, namedtuple]: | |
""" | |
Overview: | |
Implementation of Proximal Policy Optimization (arXiv:1707.06347) with value_clip and dual_clip | |
Arguments: | |
- data (:obj:`namedtuple`): the ppo input data with fieids shown in ``ppo_data`` | |
- clip_ratio (:obj:`float`): the ppo clip ratio for the constraint of policy update, defaults to 0.2 | |
- use_value_clip (:obj:`bool`): whether to use clip in value loss with the same ratio as policy | |
- dual_clip (:obj:`float`): a parameter c mentioned in arXiv:1912.09729 Equ. 5, shoule be in [1, inf),\ | |
defaults to 5.0, if you don't want to use it, set this parameter to None | |
Returns: | |
- ppo_loss (:obj:`namedtuple`): the ppo loss item, all of them are the differentiable 0-dim tensor | |
- ppo_info (:obj:`namedtuple`): the ppo optim information for monitoring, all of them are Python scalar | |
Shapes: | |
- logit_new (:obj:`torch.FloatTensor`): :math:`(B, N)`, where B is batch size and N is action dim | |
- logit_old (:obj:`torch.FloatTensor`): :math:`(B, N)` | |
- action (:obj:`torch.LongTensor`): :math:`(B, )` | |
- value_new (:obj:`torch.FloatTensor`): :math:`(B, )` | |
- value_old (:obj:`torch.FloatTensor`): :math:`(B, )` | |
- adv (:obj:`torch.FloatTensor`): :math:`(B, )` | |
- return (:obj:`torch.FloatTensor`): :math:`(B, )` | |
- weight (:obj:`torch.FloatTensor` or :obj:`None`): :math:`(B, )` | |
- policy_loss (:obj:`torch.FloatTensor`): :math:`()`, 0-dim tensor | |
- value_loss (:obj:`torch.FloatTensor`): :math:`()` | |
- entropy_loss (:obj:`torch.FloatTensor`): :math:`()` | |
Examples: | |
>>> action_dim = 4 | |
>>> data = ppo_data( | |
>>> logit_new=torch.randn(3, action_dim), | |
>>> logit_old=torch.randn(3, action_dim), | |
>>> action=torch.randint(0, action_dim, (3,)), | |
>>> value_new=torch.randn(3), | |
>>> value_old=torch.randn(3), | |
>>> adv=torch.randn(3), | |
>>> return_=torch.randn(3), | |
>>> weight=torch.ones(3), | |
>>> ) | |
>>> loss, info = ppo_error(data) | |
.. note:: | |
adv is already normalized value (adv - adv.mean()) / (adv.std() + 1e-8), and there are many | |
ways to calculate this mean and std, like among data buffer or train batch, so we don't couple | |
this part into ppo_error, you can refer to our examples for different ways. | |
""" | |
assert dual_clip is None or dual_clip > 1.0, "dual_clip value must be greater than 1.0, but get value: {}".format( | |
dual_clip | |
) | |
logit_new, logit_old, action, value_new, value_old, adv, return_, weight = data | |
policy_data = ppo_policy_data(logit_new, logit_old, action, adv, weight) | |
policy_output, policy_info = ppo_policy_error(policy_data, clip_ratio, dual_clip) | |
value_data = ppo_value_data(value_new, value_old, return_, weight) | |
value_loss = ppo_value_error(value_data, clip_ratio, use_value_clip) | |
return ppo_loss(policy_output.policy_loss, value_loss, policy_output.entropy_loss), policy_info | |
def ppo_policy_error(data: namedtuple, | |
clip_ratio: float = 0.2, | |
dual_clip: Optional[float] = None) -> Tuple[namedtuple, namedtuple]: | |
''' | |
Overview: | |
Get PPO policy loss | |
Arguments: | |
- data (:obj:`namedtuple`): ppo input data with fieids shown in ``ppo_policy_data`` | |
- clip_ratio (:obj:`float`): clip value for ratio | |
- dual_clip (:obj:`float`): a parameter c mentioned in arXiv:1912.09729 Equ. 5, shoule be in [1, inf),\ | |
defaults to 5.0, if you don't want to use it, set this parameter to None | |
Returns: | |
- ppo_policy_loss (:obj:`namedtuple`): the ppo policy loss item, all of them are the differentiable 0-dim tensor | |
- ppo_info (:obj:`namedtuple`): the ppo optim information for monitoring, all of them are Python scalar | |
Shapes: | |
- logit_new (:obj:`torch.FloatTensor`): :math:`(B, N)`, where B is batch size and N is action dim | |
- logit_old (:obj:`torch.FloatTensor`): :math:`(B, N)` | |
- action (:obj:`torch.LongTensor`): :math:`(B, )` | |
- adv (:obj:`torch.FloatTensor`): :math:`(B, )` | |
- weight (:obj:`torch.FloatTensor` or :obj:`None`): :math:`(B, )` | |
- policy_loss (:obj:`torch.FloatTensor`): :math:`()`, 0-dim tensor | |
- entropy_loss (:obj:`torch.FloatTensor`): :math:`()` | |
Examples: | |
>>> action_dim = 4 | |
>>> data = ppo_policy_data( | |
>>> logit_new=torch.randn(3, action_dim), | |
>>> logit_old=torch.randn(3, action_dim), | |
>>> action=torch.randint(0, action_dim, (3,)), | |
>>> adv=torch.randn(3), | |
>>> weight=torch.ones(3), | |
>>> ) | |
>>> loss, info = ppo_policy_error(data) | |
''' | |
logit_new, logit_old, action, adv, weight = data | |
if weight is None: | |
weight = torch.ones_like(adv) | |
dist_new = torch.distributions.categorical.Categorical(logits=logit_new) | |
dist_old = torch.distributions.categorical.Categorical(logits=logit_old) | |
logp_new = dist_new.log_prob(action) | |
logp_old = dist_old.log_prob(action) | |
dist_new_entropy = dist_new.entropy() | |
if dist_new_entropy.shape != weight.shape: | |
dist_new_entropy = dist_new.entropy().mean(dim=1) | |
entropy_loss = (dist_new_entropy * weight).mean() | |
# policy_loss | |
ratio = torch.exp(logp_new - logp_old) | |
if ratio.shape != adv.shape: | |
ratio = ratio.mean(dim=1) | |
surr1 = ratio * adv | |
surr2 = ratio.clamp(1 - clip_ratio, 1 + clip_ratio) * adv | |
if dual_clip is not None: | |
clip1 = torch.min(surr1, surr2) | |
clip2 = torch.max(clip1, dual_clip * adv) | |
# only use dual_clip when adv < 0 | |
policy_loss = -(torch.where(adv < 0, clip2, clip1) * weight).mean() | |
else: | |
policy_loss = (-torch.min(surr1, surr2) * weight).mean() | |
with torch.no_grad(): | |
approx_kl = (logp_old - logp_new).mean().item() | |
clipped = ratio.gt(1 + clip_ratio) | ratio.lt(1 - clip_ratio) | |
clipfrac = torch.as_tensor(clipped).float().mean().item() | |
return ppo_policy_loss(policy_loss, entropy_loss), ppo_info(approx_kl, clipfrac) | |
def ppo_value_error( | |
data: namedtuple, | |
clip_ratio: float = 0.2, | |
use_value_clip: bool = True, | |
) -> torch.Tensor: | |
''' | |
Overview: | |
Get PPO value loss | |
Arguments: | |
- data (:obj:`namedtuple`): ppo input data with fieids shown in ``ppo_value_data`` | |
- clip_ratio (:obj:`float`): clip value for ratio | |
- use_value_clip (:obj:`bool`): whether use value clip | |
Returns: | |
- value_loss (:obj:`torch.FloatTensor`): the ppo value loss item, \ | |
all of them are the differentiable 0-dim tensor | |
Shapes: | |
- value_new (:obj:`torch.FloatTensor`): :math:`(B, )`, where B is batch size | |
- value_old (:obj:`torch.FloatTensor`): :math:`(B, )` | |
- return (:obj:`torch.FloatTensor`): :math:`(B, )` | |
- weight (:obj:`torch.FloatTensor` or :obj:`None`): :math:`(B, )` | |
- value_loss (:obj:`torch.FloatTensor`): :math:`()`, 0-dim tensor | |
Examples: | |
>>> action_dim = 4 | |
>>> data = ppo_value_data( | |
>>> value_new=torch.randn(3), | |
>>> value_old=torch.randn(3), | |
>>> return_=torch.randn(3), | |
>>> weight=torch.ones(3), | |
>>> ) | |
>>> loss, info = ppo_value_error(data) | |
''' | |
value_new, value_old, return_, weight = data | |
if weight is None: | |
weight = torch.ones_like(value_old) | |
# value_loss | |
if use_value_clip: | |
value_clip = value_old + (value_new - value_old).clamp(-clip_ratio, clip_ratio) | |
v1 = (return_ - value_new).pow(2) | |
v2 = (return_ - value_clip).pow(2) | |
value_loss = 0.5 * (torch.max(v1, v2) * weight).mean() | |
else: | |
value_loss = 0.5 * ((return_ - value_new).pow(2) * weight).mean() | |
return value_loss | |
def ppo_error_continuous( | |
data: namedtuple, | |
clip_ratio: float = 0.2, | |
use_value_clip: bool = True, | |
dual_clip: Optional[float] = None | |
) -> Tuple[namedtuple, namedtuple]: | |
""" | |
Overview: | |
Implementation of Proximal Policy Optimization (arXiv:1707.06347) with value_clip and dual_clip | |
Arguments: | |
- data (:obj:`namedtuple`): the ppo input data with fieids shown in ``ppo_data`` | |
- clip_ratio (:obj:`float`): the ppo clip ratio for the constraint of policy update, defaults to 0.2 | |
- use_value_clip (:obj:`bool`): whether to use clip in value loss with the same ratio as policy | |
- dual_clip (:obj:`float`): a parameter c mentioned in arXiv:1912.09729 Equ. 5, shoule be in [1, inf),\ | |
defaults to 5.0, if you don't want to use it, set this parameter to None | |
Returns: | |
- ppo_loss (:obj:`namedtuple`): the ppo loss item, all of them are the differentiable 0-dim tensor | |
- ppo_info (:obj:`namedtuple`): the ppo optim information for monitoring, all of them are Python scalar | |
Shapes: | |
- mu_sigma_new (:obj:`tuple`): :math:`((B, N), (B, N))`, where B is batch size and N is action dim | |
- mu_sigma_old (:obj:`tuple`): :math:`((B, N), (B, N))`, where B is batch size and N is action dim | |
- action (:obj:`torch.LongTensor`): :math:`(B, )` | |
- value_new (:obj:`torch.FloatTensor`): :math:`(B, )` | |
- value_old (:obj:`torch.FloatTensor`): :math:`(B, )` | |
- adv (:obj:`torch.FloatTensor`): :math:`(B, )` | |
- return (:obj:`torch.FloatTensor`): :math:`(B, )` | |
- weight (:obj:`torch.FloatTensor` or :obj:`None`): :math:`(B, )` | |
- policy_loss (:obj:`torch.FloatTensor`): :math:`()`, 0-dim tensor | |
- value_loss (:obj:`torch.FloatTensor`): :math:`()` | |
- entropy_loss (:obj:`torch.FloatTensor`): :math:`()` | |
Examples: | |
>>> action_dim = 4 | |
>>> data = ppo_data_continuous( | |
>>> mu_sigma_new= dict(mu=torch.randn(3, action_dim), sigma=torch.randn(3, action_dim)**2), | |
>>> mu_sigma_old= dict(mu=torch.randn(3, action_dim), sigma=torch.randn(3, action_dim)**2), | |
>>> action=torch.randn(3, action_dim), | |
>>> value_new=torch.randn(3), | |
>>> value_old=torch.randn(3), | |
>>> adv=torch.randn(3), | |
>>> return_=torch.randn(3), | |
>>> weight=torch.ones(3), | |
>>> ) | |
>>> loss, info = ppo_error(data) | |
.. note:: | |
adv is already normalized value (adv - adv.mean()) / (adv.std() + 1e-8), and there are many | |
ways to calculate this mean and std, like among data buffer or train batch, so we don't couple | |
this part into ppo_error, you can refer to our examples for different ways. | |
""" | |
assert dual_clip is None or dual_clip > 1.0, "dual_clip value must be greater than 1.0, but get value: {}".format( | |
dual_clip | |
) | |
mu_sigma_new, mu_sigma_old, action, value_new, value_old, adv, return_, weight = data | |
if weight is None: | |
weight = torch.ones_like(adv) | |
dist_new = Independent(Normal(mu_sigma_new['mu'], mu_sigma_new['sigma']), 1) | |
if len(mu_sigma_old['mu'].shape) == 1: | |
dist_old = Independent(Normal(mu_sigma_old['mu'].unsqueeze(-1), mu_sigma_old['sigma'].unsqueeze(-1)), 1) | |
else: | |
dist_old = Independent(Normal(mu_sigma_old['mu'], mu_sigma_old['sigma']), 1) | |
logp_new = dist_new.log_prob(action) | |
logp_old = dist_old.log_prob(action) | |
entropy_loss = (dist_new.entropy() * weight).mean() | |
# policy_loss | |
ratio = torch.exp(logp_new - logp_old) | |
surr1 = ratio * adv | |
surr2 = ratio.clamp(1 - clip_ratio, 1 + clip_ratio) * adv | |
if dual_clip is not None: | |
policy_loss = (-torch.max(torch.min(surr1, surr2), dual_clip * adv) * weight).mean() | |
else: | |
policy_loss = (-torch.min(surr1, surr2) * weight).mean() | |
with torch.no_grad(): | |
approx_kl = (logp_old - logp_new).mean().item() | |
clipped = ratio.gt(1 + clip_ratio) | ratio.lt(1 - clip_ratio) | |
clipfrac = torch.as_tensor(clipped).float().mean().item() | |
# value_loss | |
if use_value_clip: | |
value_clip = value_old + (value_new - value_old).clamp(-clip_ratio, clip_ratio) | |
v1 = (return_ - value_new).pow(2) | |
v2 = (return_ - value_clip).pow(2) | |
value_loss = 0.5 * (torch.max(v1, v2) * weight).mean() | |
else: | |
value_loss = 0.5 * ((return_ - value_new).pow(2) * weight).mean() | |
return ppo_loss(policy_loss, value_loss, entropy_loss), ppo_info(approx_kl, clipfrac) | |
def ppo_policy_error_continuous(data: namedtuple, | |
clip_ratio: float = 0.2, | |
dual_clip: Optional[float] = None) -> Tuple[namedtuple, namedtuple]: | |
""" | |
Overview: | |
Implementation of Proximal Policy Optimization (arXiv:1707.06347) with dual_clip | |
Arguments: | |
- data (:obj:`namedtuple`): the ppo input data with fieids shown in ``ppo_data`` | |
- clip_ratio (:obj:`float`): the ppo clip ratio for the constraint of policy update, defaults to 0.2 | |
- dual_clip (:obj:`float`): a parameter c mentioned in arXiv:1912.09729 Equ. 5, shoule be in [1, inf),\ | |
defaults to 5.0, if you don't want to use it, set this parameter to None | |
Returns: | |
- ppo_loss (:obj:`namedtuple`): the ppo loss item, all of them are the differentiable 0-dim tensor | |
- ppo_info (:obj:`namedtuple`): the ppo optim information for monitoring, all of them are Python scalar | |
Shapes: | |
- mu_sigma_new (:obj:`tuple`): :math:`((B, N), (B, N))`, where B is batch size and N is action dim | |
- mu_sigma_old (:obj:`tuple`): :math:`((B, N), (B, N))`, where B is batch size and N is action dim | |
- action (:obj:`torch.LongTensor`): :math:`(B, )` | |
- adv (:obj:`torch.FloatTensor`): :math:`(B, )` | |
- weight (:obj:`torch.FloatTensor` or :obj:`None`): :math:`(B, )` | |
- policy_loss (:obj:`torch.FloatTensor`): :math:`()`, 0-dim tensor | |
- entropy_loss (:obj:`torch.FloatTensor`): :math:`()` | |
Examples: | |
>>> action_dim = 4 | |
>>> data = ppo_policy_data_continuous( | |
>>> mu_sigma_new=dict(mu=torch.randn(3, action_dim), sigma=torch.randn(3, action_dim)**2), | |
>>> mu_sigma_old=dict(mu=torch.randn(3, action_dim), sigma=torch.randn(3, action_dim)**2), | |
>>> action=torch.randn(3, action_dim), | |
>>> adv=torch.randn(3), | |
>>> weight=torch.ones(3), | |
>>> ) | |
>>> loss, info = ppo_policy_error_continuous(data) | |
""" | |
assert dual_clip is None or dual_clip > 1.0, "dual_clip value must be greater than 1.0, but get value: {}".format( | |
dual_clip | |
) | |
mu_sigma_new, mu_sigma_old, action, adv, weight = data | |
if weight is None: | |
weight = torch.ones_like(adv) | |
dist_new = Independent(Normal(mu_sigma_new['mu'], mu_sigma_new['sigma']), 1) | |
if len(mu_sigma_old['mu'].shape) == 1: | |
dist_old = Independent(Normal(mu_sigma_old['mu'].unsqueeze(-1), mu_sigma_old['sigma'].unsqueeze(-1)), 1) | |
else: | |
dist_old = Independent(Normal(mu_sigma_old['mu'], mu_sigma_old['sigma']), 1) | |
logp_new = dist_new.log_prob(action) | |
logp_old = dist_old.log_prob(action) | |
entropy_loss = (dist_new.entropy() * weight).mean() | |
# policy_loss | |
ratio = torch.exp(logp_new - logp_old) | |
surr1 = ratio * adv | |
surr2 = ratio.clamp(1 - clip_ratio, 1 + clip_ratio) * adv | |
if dual_clip is not None: | |
policy_loss = (-torch.max(torch.min(surr1, surr2), dual_clip * adv) * weight).mean() | |
else: | |
policy_loss = (-torch.min(surr1, surr2) * weight).mean() | |
with torch.no_grad(): | |
approx_kl = (logp_old - logp_new).mean().item() | |
clipped = ratio.gt(1 + clip_ratio) | ratio.lt(1 - clip_ratio) | |
clipfrac = torch.as_tensor(clipped).float().mean().item() | |
return ppo_policy_loss(policy_loss, entropy_loss), ppo_info(approx_kl, clipfrac) | |