Spaces:
Sleeping
Sleeping
import pytest | |
from itertools import product | |
import numpy as np | |
import torch | |
from ding.rl_utils import a2c_data, a2c_error, a2c_error_continuous | |
random_weight = torch.rand(4) + 1 | |
weight_args = [None, random_weight] | |
def test_a2c(weight): | |
B, N = 4, 32 | |
logit = torch.randn(B, N).requires_grad_(True) | |
action = torch.randint(0, N, size=(B, )) | |
value = torch.randn(B).requires_grad_(True) | |
adv = torch.rand(B) | |
return_ = torch.randn(B) * 2 | |
data = a2c_data(logit, action, value, adv, return_, weight) | |
loss = a2c_error(data) | |
assert all([l.shape == tuple() for l in loss]) | |
assert logit.grad is None | |
assert value.grad is None | |
total_loss = sum(loss) | |
total_loss.backward() | |
assert isinstance(logit.grad, torch.Tensor) | |
assert isinstance(value.grad, torch.Tensor) | |
def test_a2c_continuous(weight): | |
B, N = 4, 32 | |
logit = { | |
"mu": torch.randn(B, N).requires_grad_(True), | |
"sigma": torch.exp(torch.randn(B, N)).requires_grad_(True), | |
} | |
action = torch.randn(B, N).requires_grad_(True) | |
value = torch.randn(B).requires_grad_(True) | |
adv = torch.rand(B) | |
return_ = torch.randn(B) * 2 | |
data = a2c_data(logit, action, value, adv, return_, weight) | |
loss = a2c_error_continuous(data) | |
assert all([l.shape == tuple() for l in loss]) | |
assert logit["mu"].grad is None | |
assert logit["sigma"].grad is None | |
assert value.grad is None | |
total_loss = sum(loss) | |
total_loss.backward() | |
assert isinstance(logit["mu"].grad, torch.Tensor) | |
assert isinstance(logit['sigma'].grad, torch.Tensor) | |
assert isinstance(value.grad, torch.Tensor) | |