Spaces:
Sleeping
Sleeping
import pytest | |
import copy | |
from collections import deque | |
import numpy as np | |
import torch | |
from ding.rl_utils import get_gae, get_gae_with_default_last_value, get_nstep_return_data, get_train_sample | |
class TestAdder: | |
def get_transition(self): | |
return { | |
'value': torch.randn(1), | |
'reward': torch.rand(1), | |
'action': torch.rand(3), | |
'other': np.random.randint(0, 10, size=(4, )), | |
'obs': torch.randn(3), | |
'done': False | |
} | |
def get_transition_multi_agent(self): | |
return { | |
'value': torch.randn(1, 8), | |
'reward': torch.rand(1, 1), | |
'action': torch.rand(3), | |
'other': np.random.randint(0, 10, size=(4, )), | |
'obs': torch.randn(3), | |
'done': False | |
} | |
def test_get_gae(self): | |
transitions = deque([self.get_transition() for _ in range(10)]) | |
last_value = torch.randn(1) | |
output = get_gae(transitions, last_value, gamma=0.99, gae_lambda=0.97, cuda=False) | |
for i in range(len(output)): | |
o = output[i] | |
assert 'adv' in o.keys() | |
for k, v in o.items(): | |
if k == 'adv': | |
assert isinstance(v, torch.Tensor) | |
assert v.shape == (1, ) | |
else: | |
if k == 'done': | |
assert v == transitions[i][k] | |
else: | |
assert (v == transitions[i][k]).all() | |
output1 = get_gae_with_default_last_value( | |
copy.deepcopy(transitions), True, gamma=0.99, gae_lambda=0.97, cuda=False | |
) | |
for i in range(len(output)): | |
assert output[i]['adv'].ne(output1[i]['adv']) | |
data = copy.deepcopy(transitions) | |
data.append({'value': last_value}) | |
output2 = get_gae_with_default_last_value(data, False, gamma=0.99, gae_lambda=0.97, cuda=False) | |
for i in range(len(output)): | |
assert output[i]['adv'].eq(output2[i]['adv']) | |
def test_get_gae_multi_agent(self): | |
transitions = deque([self.get_transition_multi_agent() for _ in range(10)]) | |
last_value = torch.randn(1, 8) | |
output = get_gae(transitions, last_value, gamma=0.99, gae_lambda=0.97, cuda=False) | |
for i in range(len(output)): | |
o = output[i] | |
assert 'adv' in o.keys() | |
for k, v in o.items(): | |
if k == 'adv': | |
assert isinstance(v, torch.Tensor) | |
assert v.shape == ( | |
1, | |
8, | |
) | |
else: | |
if k == 'done': | |
assert v == transitions[i][k] | |
else: | |
assert (v == transitions[i][k]).all() | |
output1 = get_gae_with_default_last_value( | |
copy.deepcopy(transitions), True, gamma=0.99, gae_lambda=0.97, cuda=False | |
) | |
for i in range(len(output)): | |
for j in range(output[i]['adv'].shape[1]): | |
assert output[i]['adv'][0][j].ne(output1[i]['adv'][0][j]) | |
data = copy.deepcopy(transitions) | |
data.append({'value': last_value}) | |
output2 = get_gae_with_default_last_value(data, False, gamma=0.99, gae_lambda=0.97, cuda=False) | |
for i in range(len(output)): | |
for j in range(output[i]['adv'].shape[1]): | |
assert output[i]['adv'][0][j].eq(output2[i]['adv'][0][j]) | |
def test_get_nstep_return_data(self): | |
nstep = 3 | |
data = deque([self.get_transition() for _ in range(10)]) | |
output_data = get_nstep_return_data(data, nstep=nstep) | |
assert len(output_data) == 10 | |
for i, o in enumerate(output_data): | |
assert o['reward'].shape == (nstep, ) | |
if i >= 10 - nstep + 1: | |
assert o['done'] is data[-1]['done'] | |
assert o['reward'][-(i - 10 + nstep):].sum() == 0 | |
data = deque([self.get_transition() for _ in range(12)]) | |
output_data = get_nstep_return_data(data, nstep=nstep) | |
assert len(output_data) == 12 | |
def test_get_train_sample(self): | |
data = [self.get_transition() for _ in range(10)] | |
output = get_train_sample(data, unroll_len=1, last_fn_type='drop') | |
assert len(output) == 10 | |
output = get_train_sample(data, unroll_len=4, last_fn_type='drop') | |
assert len(output) == 2 | |
for o in output: | |
for v in o.values(): | |
assert len(v) == 4 | |
output = get_train_sample(data, unroll_len=4, last_fn_type='null_padding') | |
assert len(output) == 3 | |
for o in output: | |
for v in o.values(): | |
assert len(v) == 4 | |
assert output[-1]['done'] == [False, False, True, True] | |
for i in range(1, 10 % 4 + 1): | |
assert id(output[-1]['obs'][-i]) != id(output[-1]['obs'][0]) | |
output = get_train_sample(data, unroll_len=4, last_fn_type='last') | |
assert len(output) == 3 | |
for o in output: | |
for v in o.values(): | |
assert len(v) == 4 | |
miss_num = 4 - 10 % 4 | |
for i in range(10 % 4): | |
assert id(output[-1]['obs'][i]) != id(output[-2]['obs'][miss_num + i]) | |
output = get_train_sample(data, unroll_len=11, last_fn_type='last') | |
assert len(output) == 1 | |
assert len(output[0]['obs']) == 11 | |
assert output[-1]['done'][-1] is True | |
assert output[-1]['done'][0] is False | |
assert id(output[-1]['obs'][-1]) != id(output[-1]['obs'][0]) | |
test = TestAdder() | |
test.test_get_gae_multi_agent() | |