Spaces:
Sleeping
Sleeping
import pytest | |
import torch | |
from ding.rl_utils import get_epsilon_greedy_fn, create_noise_generator | |
def test_eps_greedy(): | |
exp_eps = get_epsilon_greedy_fn(start=0.9, end=0.1, decay=100) | |
assert exp_eps(0) == 0.9 | |
assert exp_eps(10) > exp_eps(200) | |
lin_eps1 = get_epsilon_greedy_fn(start=1.0, end=0.1, decay=90, type_='linear') | |
assert lin_eps1(9) == 0.91 | |
assert lin_eps1(100) == 0.1 | |
lin_eps2 = get_epsilon_greedy_fn(start=0.9, end=0.3, decay=20, type_='linear') | |
assert pytest.approx(lin_eps2(9)) == 0.63 | |
assert lin_eps2(100) == 0.3 | |
def test_noise(): | |
bs, dim = 4, 15 | |
logits = torch.Tensor(bs, dim) | |
gauss = create_noise_generator(noise_type='gauss', noise_kwargs={'mu': 0.0, 'sigma': 1.5}) | |
g_noise = gauss(logits.shape, logits.device) | |
assert g_noise.shape == logits.shape | |
assert g_noise.device == logits.device | |
x0 = torch.rand(bs, dim) | |
ou = create_noise_generator(noise_type='ou', noise_kwargs={'mu': 0.1, 'sigma': 1.0, 'theta': 2.0, 'x0': x0}) | |
o_noise1 = ou((bs, dim), x0.device) | |
o_noise2 = ou((bs, dim), x0.device) | |
assert o_noise2.shape == x0.shape | |
assert o_noise2.device == x0.device | |
assert not torch.equal(ou.x0, ou._x) # OUNoise._x is not the same as _x0 after 2 calls | |
assert torch.abs(x0 - ou.x0).max() < 1e-6 # OUNoise._x0 does not change | |
x0 += 0.05 | |
ou.x0 = x0 | |
assert torch.abs(ou.x0 - x0).max() < 1e-6 and torch.abs(ou.x0 - ou._x).max() < 1e-6 | |
o_noise3 = ou(x0.shape, x0.device) | |