Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn.functional as F | |
from ding.hpc_rl import hpc_wrapper | |
from .td import generalized_lambda_returns | |
def tb_cross_entropy(logit, label, mask=None): | |
""" | |
Overview: | |
Compute the cross entropy loss for label and logit, with mask support | |
Arguments: | |
- logit (:obj:`torch.Tensor`): the logit tensor, of size [T, B, N] or [T, B, N, N2] | |
- label (:obj:`torch.Tensor`): the label tensor, of size [T, B] or [T, B, N2] | |
- mask (:obj:`torch.Tensor` or :obj:`None`): the mask tensor, of size [T, B] or [T, B, N2] | |
Returns: | |
- ce (:obj:`torch.Tensor`): the computed cross entropy, of size [T, B] | |
Examples: | |
>>> T, B, N, N2 = 4, 8, 5, 7 | |
>>> logit = torch.randn(T, B, N, N2).softmax(-1).requires_grad_(True) | |
>>> action = logit.argmax(-1).detach() | |
>>> ce = tb_cross_entropy(logit, action) | |
""" | |
assert (len(label.shape) >= 2) | |
T, B = label.shape[:2] | |
# Special 2D case | |
if len(label.shape) > 2: | |
assert len(label.shape) == 3 | |
s, n = logit.shape[-2:] | |
logit = logit.reshape(-1, n) | |
label = label.reshape(-1) | |
ce = -F.cross_entropy(logit, label, reduction='none') | |
ce = ce.view(T * B, -1) | |
if mask is not None: | |
ce *= mask.reshape(-1, s) | |
ce = ce.sum(dim=1) | |
ce = ce.reshape(T, B) | |
else: | |
label = label.reshape(-1) | |
logit = logit.reshape(-1, logit.shape[-1]) | |
ce = -F.cross_entropy(logit, label, reduction='none') | |
ce = ce.reshape(T, B, -1) | |
ce = ce.mean(dim=2) | |
return ce | |
def upgo_returns(rewards: torch.Tensor, bootstrap_values: torch.Tensor) -> torch.Tensor: | |
r""" | |
Overview: | |
Computing UPGO return targets. Also notice there is no special handling for the terminal state. | |
Arguments: | |
- rewards (:obj:`torch.Tensor`): the returns from time step 0 to T-1, \ | |
of size [T_traj, batchsize] | |
- bootstrap_values (:obj:`torch.Tensor`): estimation of the state value at step 0 to T, \ | |
of size [T_traj+1, batchsize] | |
Returns: | |
- ret (:obj:`torch.Tensor`): Computed lambda return value for each state from 0 to T-1, \ | |
of size [T_traj, batchsize] | |
Examples: | |
>>> T, B, N, N2 = 4, 8, 5, 7 | |
>>> rewards = torch.randn(T, B) | |
>>> bootstrap_values = torch.randn(T + 1, B).requires_grad_(True) | |
>>> returns = upgo_returns(rewards, bootstrap_values) | |
""" | |
# UPGO can be viewed as a lambda return! The trace continues for V_t (i.e. lambda = 1.0) if r_tp1 + V_tp2 > V_tp1. | |
# as the lambdas[-1, :] is ignored in generalized_lambda_returns, we don't care about bootstrap_values_tp2[-1] | |
lambdas = (rewards + bootstrap_values[1:]) >= bootstrap_values[:-1] | |
lambdas = torch.cat([lambdas[1:], torch.ones_like(lambdas[-1:])], dim=0) | |
return generalized_lambda_returns(bootstrap_values, rewards, 1.0, lambdas) | |
def upgo_loss( | |
target_output: torch.Tensor, | |
rhos: torch.Tensor, | |
action: torch.Tensor, | |
rewards: torch.Tensor, | |
bootstrap_values: torch.Tensor, | |
mask=None | |
) -> torch.Tensor: | |
r""" | |
Overview: | |
Computing UPGO loss given constant gamma and lambda. There is no special handling for terminal state value, | |
if the last state in trajectory is the terminal, just pass a 0 as bootstrap_terminal_value. | |
Arguments: | |
- target_output (:obj:`torch.Tensor`): the output computed by the target policy network, \ | |
of size [T_traj, batchsize, n_output] | |
- rhos (:obj:`torch.Tensor`): the importance sampling ratio, of size [T_traj, batchsize] | |
- action (:obj:`torch.Tensor`): the action taken, of size [T_traj, batchsize] | |
- rewards (:obj:`torch.Tensor`): the returns from time step 0 to T-1, of size [T_traj, batchsize] | |
- bootstrap_values (:obj:`torch.Tensor`): estimation of the state value at step 0 to T, \ | |
of size [T_traj+1, batchsize] | |
Returns: | |
- loss (:obj:`torch.Tensor`): Computed importance sampled UPGO loss, averaged over the samples, of size [] | |
Examples: | |
>>> T, B, N, N2 = 4, 8, 5, 7 | |
>>> rhos = torch.randn(T, B) | |
>>> loss = upgo_loss(logit, rhos, action, rewards, bootstrap_values) | |
""" | |
# discard the value at T as it should be considered in the next slice | |
with torch.no_grad(): | |
returns = upgo_returns(rewards, bootstrap_values) | |
advantages = rhos * (returns - bootstrap_values[:-1]) | |
metric = tb_cross_entropy(target_output, action, mask) | |
assert (metric.shape == action.shape[:2]) | |
losses = advantages * metric | |
return -losses.mean() | |