Spaces:
Sleeping
Sleeping
import torch | |
def value_transform(x: torch.Tensor, eps: float = 1e-2) -> torch.Tensor: | |
r""" | |
Overview: | |
A function to reduce the scale of the action-value function. | |
:math: `h(x) = sign(x)(\sqrt{(abs(x)+1)} - 1) + \eps * x` . | |
Arguments: | |
- x: (:obj:`torch.Tensor`) The input tensor to be normalized. | |
- eps: (:obj:`float`) The coefficient of the additive regularization term \ | |
to ensure h^{-1} is Lipschitz continuous | |
Returns: | |
- (:obj:`torch.Tensor`) Normalized tensor. | |
.. note:: | |
Observe and Look Further: Achieving Consistent Performance on Atari | |
(https://arxiv.org/abs/1805.11593) | |
""" | |
return torch.sign(x) * (torch.sqrt(torch.abs(x) + 1) - 1) + eps * x | |
def value_inv_transform(x: torch.Tensor, eps: float = 1e-2) -> torch.Tensor: | |
r""" | |
Overview: | |
The inverse form of value rescale. | |
:math: `h^{-1}(x) = sign(x)({(\frac{\sqrt{1+4\eps(|x|+1+\eps)}-1}{2\eps})}^2-1)` . | |
Arguments: | |
- x: (:obj:`torch.Tensor`) The input tensor to be unnormalized. | |
- eps: (:obj:`float`) The coefficient of the additive regularization term \ | |
to ensure h^{-1} is Lipschitz continuous | |
Returns: | |
- (:obj:`torch.Tensor`) Unnormalized tensor. | |
""" | |
return torch.sign(x) * (((torch.sqrt(1 + 4 * eps * (torch.abs(x) + 1 + eps)) - 1) / (2 * eps)) ** 2 - 1) | |
def symlog(x: torch.Tensor) -> torch.Tensor: | |
r""" | |
Overview: | |
A function to normalize the targets. | |
:math: `symlog(x) = sign(x)(\ln{|x|+1})` . | |
Arguments: | |
- x: (:obj:`torch.Tensor`) The input tensor to be normalized. | |
Returns: | |
- (:obj:`torch.Tensor`) Normalized tensor. | |
.. note:: | |
Mastering Diverse Domains through World Models | |
(https://arxiv.org/abs/2301.04104) | |
""" | |
return torch.sign(x) * (torch.log(torch.abs(x) + 1)) | |
def inv_symlog(x: torch.Tensor) -> torch.Tensor: | |
r""" | |
Overview: | |
The inverse form of symlog. | |
:math: `symexp(x) = sign(x)(\exp{|x|}-1)` . | |
Arguments: | |
- x: (:obj:`torch.Tensor`) The input tensor to be unnormalized. | |
Returns: | |
- (:obj:`torch.Tensor`) Unnormalized tensor. | |
""" | |
return torch.sign(x) * (torch.exp(torch.abs(x)) - 1) | |