Spaces:
Sleeping
Sleeping
import pytest | |
import torch | |
from ding.torch_utils.reshape_helper import fold_batch, unfold_batch, unsqueeze_repeat | |
def test_fold_unfold_batch(): | |
T, B, C, H, W = 10, 20, 3, 255, 255 | |
data = torch.randn(T, B, C, H, W) | |
data, batch_dim = fold_batch(data, nonbatch_ndims=3) | |
assert data.shape == (T * B, C, H, W) and batch_dim == (T, B) | |
data = unfold_batch(data, batch_dim) | |
assert data.shape == (T, B, C, H, W) | |
T, B, N = 10, 20, 100 | |
data = torch.randn(T, B, N) | |
data, batch_dim = fold_batch(data, nonbatch_ndims=1) | |
assert data.shape == (T * B, N) and batch_dim == (T, B) | |
data = unfold_batch(data, batch_dim) | |
assert data.shape == (T, B, N) | |
def test_unsqueeze_repeat(): | |
T, B, C, H, W = 10, 20, 3, 255, 255 | |
repeat_times = 4 | |
data = torch.randn(T, B, C, H, W) | |
ensembled_data = unsqueeze_repeat(data, repeat_times) | |
assert ensembled_data.shape == (repeat_times, T, B, C, H, W) | |
ensembled_data = unsqueeze_repeat(data, repeat_times, -1) | |
assert ensembled_data.shape == (T, B, C, H, W, repeat_times) | |
ensembled_data = unsqueeze_repeat(data, repeat_times, 2) | |
assert ensembled_data.shape == (T, B, repeat_times, C, H, W) | |