Spaces:
Sleeping
Sleeping
from collections.abc import Sequence, Mapping | |
from typing import List, Dict, Union, Any | |
import torch | |
import treetensor.torch as ttorch | |
import re | |
import collections.abc as container_abcs | |
from ding.compatibility import torch_ge_131 | |
int_classes = int | |
string_classes = (str, bytes) | |
np_str_obj_array_pattern = re.compile(r'[SaUO]') | |
default_collate_err_msg_format = ( | |
"default_collate: batch must contain tensors, numpy arrays, numbers, " | |
"dicts or lists; found {}" | |
) | |
def ttorch_collate(x, json: bool = False, cat_1dim: bool = True): | |
""" | |
Overview: | |
Collates a list of tensors or nested dictionaries of tensors into a single tensor or nested \ | |
dictionary of tensors. | |
Arguments: | |
- x : The input list of tensors or nested dictionaries of tensors. | |
- json (:obj:`bool`): If True, converts the output to JSON format. Defaults to False. | |
- cat_1dim (:obj:`bool`): If True, concatenates tensors with shape (B, 1) along the last dimension. \ | |
Defaults to True. | |
Returns: | |
The collated output tensor or nested dictionary of tensors. | |
Examples: | |
>>> # case 1: Collate a list of tensors | |
>>> tensors = [torch.tensor([1, 2, 3]), torch.tensor([4, 5, 6]), torch.tensor([7, 8, 9])] | |
>>> collated = ttorch_collate(tensors) | |
collated = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) | |
>>> # case 2: Collate a nested dictionary of tensors | |
>>> nested_dict = { | |
'a': torch.tensor([1, 2, 3]), | |
'b': torch.tensor([4, 5, 6]), | |
'c': torch.tensor([7, 8, 9]) | |
} | |
>>> collated = ttorch_collate(nested_dict) | |
collated = { | |
'a': torch.tensor([1, 2, 3]), | |
'b': torch.tensor([4, 5, 6]), | |
'c': torch.tensor([7, 8, 9]) | |
} | |
>>> # case 3: Collate a list of nested dictionaries of tensors | |
>>> nested_dicts = [ | |
{'a': torch.tensor([1, 2, 3]), 'b': torch.tensor([4, 5, 6])}, | |
{'a': torch.tensor([7, 8, 9]), 'b': torch.tensor([10, 11, 12])} | |
] | |
>>> collated = ttorch_collate(nested_dicts) | |
collated = { | |
'a': torch.tensor([[1, 2, 3], [7, 8, 9]]), | |
'b': torch.tensor([[4, 5, 6], [10, 11, 12]]) | |
} | |
""" | |
def inplace_fn(t): | |
for k in t.keys(): | |
if isinstance(t[k], torch.Tensor): | |
if len(t[k].shape) == 2 and t[k].shape[1] == 1: # reshape (B, 1) -> (B) | |
t[k] = t[k].squeeze(-1) | |
else: | |
inplace_fn(t[k]) | |
x = ttorch.stack(x) | |
if cat_1dim: | |
inplace_fn(x) | |
if json: | |
x = x.json() | |
return x | |
def default_collate(batch: Sequence, | |
cat_1dim: bool = True, | |
ignore_prefix: list = ['collate_ignore']) -> Union[torch.Tensor, Mapping, Sequence]: | |
""" | |
Overview: | |
Put each data field into a tensor with outer dimension batch size. | |
Arguments: | |
- batch (:obj:`Sequence`): A data sequence, whose length is batch size, whose element is one piece of data. | |
- cat_1dim (:obj:`bool`): Whether to concatenate tensors with shape (B, 1) to (B), defaults to True. | |
- ignore_prefix (:obj:`list`): A list of prefixes to ignore when collating dictionaries, \ | |
defaults to ['collate_ignore']. | |
Returns: | |
- ret (:obj:`Union[torch.Tensor, Mapping, Sequence]`): the collated data, with batch size into each data \ | |
field. The return dtype depends on the original element dtype, can be [torch.Tensor, Mapping, Sequence]. | |
Example: | |
>>> # a list with B tensors shaped (m, n) -->> a tensor shaped (B, m, n) | |
>>> a = [torch.zeros(2,3) for _ in range(4)] | |
>>> default_collate(a).shape | |
torch.Size([4, 2, 3]) | |
>>> | |
>>> # a list with B lists, each list contains m elements -->> a list of m tensors, each with shape (B, ) | |
>>> a = [[0 for __ in range(3)] for _ in range(4)] | |
>>> default_collate(a) | |
[tensor([0, 0, 0, 0]), tensor([0, 0, 0, 0]), tensor([0, 0, 0, 0])] | |
>>> | |
>>> # a list with B dicts, whose values are tensors shaped :math:`(m, n)` -->> | |
>>> # a dict whose values are tensors with shape :math:`(B, m, n)` | |
>>> a = [{i: torch.zeros(i,i+1) for i in range(2, 4)} for _ in range(4)] | |
>>> print(a[0][2].shape, a[0][3].shape) | |
torch.Size([2, 3]) torch.Size([3, 4]) | |
>>> b = default_collate(a) | |
>>> print(b[2].shape, b[3].shape) | |
torch.Size([4, 2, 3]) torch.Size([4, 3, 4]) | |
""" | |
if isinstance(batch, ttorch.Tensor): | |
return batch.json() | |
elem = batch[0] | |
elem_type = type(elem) | |
if isinstance(elem, torch.Tensor): | |
out = None | |
if torch_ge_131() and torch.utils.data.get_worker_info() is not None: | |
# If we're in a background process, directly concatenate into a | |
# shared memory tensor to avoid an extra copy | |
numel = sum([x.numel() for x in batch]) | |
storage = elem.storage()._new_shared(numel) | |
out = elem.new(storage) | |
if elem.shape == (1, ) and cat_1dim: | |
# reshape (B, 1) -> (B) | |
return torch.cat(batch, 0, out=out) | |
# return torch.stack(batch, 0, out=out) | |
else: | |
return torch.stack(batch, 0, out=out) | |
elif isinstance(elem, ttorch.Tensor): | |
return ttorch_collate(batch, json=True, cat_1dim=cat_1dim) | |
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \ | |
and elem_type.__name__ != 'string_': | |
if elem_type.__name__ == 'ndarray': | |
# array of string classes and object | |
if np_str_obj_array_pattern.search(elem.dtype.str) is not None: | |
raise TypeError(default_collate_err_msg_format.format(elem.dtype)) | |
return default_collate([torch.as_tensor(b) for b in batch], cat_1dim=cat_1dim) | |
elif elem.shape == (): # scalars | |
return torch.as_tensor(batch) | |
elif isinstance(elem, float): | |
return torch.tensor(batch, dtype=torch.float32) | |
elif isinstance(elem, int_classes): | |
dtype = torch.bool if isinstance(elem, bool) else torch.int64 | |
return torch.tensor(batch, dtype=dtype) | |
elif isinstance(elem, string_classes): | |
return batch | |
elif isinstance(elem, container_abcs.Mapping): | |
ret = {} | |
for key in elem: | |
if any([key.startswith(t) for t in ignore_prefix]): | |
ret[key] = [d[key] for d in batch] | |
else: | |
ret[key] = default_collate([d[key] for d in batch], cat_1dim=cat_1dim) | |
return ret | |
elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple | |
return elem_type(*(default_collate(samples, cat_1dim=cat_1dim) for samples in zip(*batch))) | |
elif isinstance(elem, container_abcs.Sequence): | |
transposed = zip(*batch) | |
return [default_collate(samples, cat_1dim=cat_1dim) for samples in transposed] | |
raise TypeError(default_collate_err_msg_format.format(elem_type)) | |
def timestep_collate(batch: List[Dict[str, Any]]) -> Dict[str, Union[torch.Tensor, list]]: | |
""" | |
Overview: | |
Collates a batch of timestepped data fields into tensors with the outer dimension being the batch size. \ | |
Each timestepped data field is represented as a tensor with shape [T, B, any_dims], where T is the length \ | |
of the sequence, B is the batch size, and any_dims represents the shape of the tensor at each timestep. | |
Arguments: | |
- batch(:obj:`List[Dict[str, Any]]`): A list of dictionaries with length B, where each dictionary represents \ | |
a timestepped data field. Each dictionary contains a key-value pair, where the key is the name of the \ | |
data field and the value is a sequence of torch.Tensor objects with any shape. | |
Returns: | |
- ret(:obj:`Dict[str, Union[torch.Tensor, list]]`): The collated data, with the timestep and batch size \ | |
incorporated into each data field. The shape of each data field is [T, B, dim1, dim2, ...]. | |
Examples: | |
>>> batch = [ | |
{'data0': [torch.tensor([1, 2, 3]), torch.tensor([4, 5, 6])]}, | |
{'data1': [torch.tensor([7, 8, 9]), torch.tensor([10, 11, 12])]} | |
] | |
>>> collated_data = timestep_collate(batch) | |
>>> print(collated_data['data'].shape) | |
torch.Size([2, 2, 3]) | |
""" | |
def stack(data): | |
if isinstance(data, container_abcs.Mapping): | |
return {k: stack(data[k]) for k in data} | |
elif isinstance(data, container_abcs.Sequence) and isinstance(data[0], torch.Tensor): | |
return torch.stack(data) | |
else: | |
return data | |
elem = batch[0] | |
assert isinstance(elem, (container_abcs.Mapping, list)), type(elem) | |
if isinstance(batch[0], list): # new pipeline + treetensor | |
prev_state = [[b[i].get('prev_state') for b in batch] for i in range(len(batch[0]))] | |
batch_data = ttorch.stack([ttorch_collate(b) for b in batch]) # (B, T, *) | |
del batch_data.prev_state | |
batch_data = batch_data.transpose(1, 0) | |
batch_data.prev_state = prev_state | |
else: | |
prev_state = [b.pop('prev_state') for b in batch] | |
batch_data = default_collate(batch) # -> {some_key: T lists}, each list is [B, some_dim] | |
batch_data = stack(batch_data) # -> {some_key: [T, B, some_dim]} | |
transformed_prev_state = list(zip(*prev_state)) | |
batch_data['prev_state'] = transformed_prev_state | |
# append back prev_state, avoiding multi batch share the same data bug | |
for i in range(len(batch)): | |
batch[i]['prev_state'] = prev_state[i] | |
return batch_data | |
def diff_shape_collate(batch: Sequence) -> Union[torch.Tensor, Mapping, Sequence]: | |
""" | |
Overview: | |
Collates a batch of data with different shapes. | |
This function is similar to `default_collate`, but it allows tensors in the batch to have `None` values, \ | |
which is common in StarCraft observations. | |
Arguments: | |
- batch (:obj:`Sequence`): A sequence of data, where each element is a piece of data. | |
Returns: | |
- ret (:obj:`Union[torch.Tensor, Mapping, Sequence]`): The collated data, with the batch size applied \ | |
to each data field. The return type depends on the original element type and can be a torch.Tensor, \ | |
Mapping, or Sequence. | |
Examples: | |
>>> # a list with B tensors shaped (m, n) -->> a tensor shaped (B, m, n) | |
>>> a = [torch.zeros(2,3) for _ in range(4)] | |
>>> diff_shape_collate(a).shape | |
torch.Size([4, 2, 3]) | |
>>> | |
>>> # a list with B lists, each list contains m elements -->> a list of m tensors, each with shape (B, ) | |
>>> a = [[0 for __ in range(3)] for _ in range(4)] | |
>>> diff_shape_collate(a) | |
[tensor([0, 0, 0, 0]), tensor([0, 0, 0, 0]), tensor([0, 0, 0, 0])] | |
>>> | |
>>> # a list with B dicts, whose values are tensors shaped :math:`(m, n)` -->> | |
>>> # a dict whose values are tensors with shape :math:`(B, m, n)` | |
>>> a = [{i: torch.zeros(i,i+1) for i in range(2, 4)} for _ in range(4)] | |
>>> print(a[0][2].shape, a[0][3].shape) | |
torch.Size([2, 3]) torch.Size([3, 4]) | |
>>> b = diff_shape_collate(a) | |
>>> print(b[2].shape, b[3].shape) | |
torch.Size([4, 2, 3]) torch.Size([4, 3, 4]) | |
""" | |
elem = batch[0] | |
elem_type = type(elem) | |
if any([isinstance(elem, type(None)) for elem in batch]): | |
return batch | |
elif isinstance(elem, torch.Tensor): | |
shapes = [e.shape for e in batch] | |
if len(set(shapes)) != 1: | |
return batch | |
else: | |
return torch.stack(batch, 0) | |
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \ | |
and elem_type.__name__ != 'string_': | |
if elem_type.__name__ == 'ndarray': | |
return diff_shape_collate([torch.as_tensor(b) for b in batch]) # todo | |
elif elem.shape == (): # scalars | |
return torch.as_tensor(batch) | |
elif isinstance(elem, float): | |
return torch.tensor(batch, dtype=torch.float32) | |
elif isinstance(elem, int_classes): | |
dtype = torch.bool if isinstance(elem, bool) else torch.int64 | |
return torch.tensor(batch, dtype=dtype) | |
elif isinstance(elem, Mapping): | |
return {key: diff_shape_collate([d[key] for d in batch]) for key in elem} | |
elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple | |
return elem_type(*(diff_shape_collate(samples) for samples in zip(*batch))) | |
elif isinstance(elem, Sequence): | |
transposed = zip(*batch) | |
return [diff_shape_collate(samples) for samples in transposed] | |
raise TypeError('not support element type: {}'.format(elem_type)) | |
def default_decollate( | |
batch: Union[torch.Tensor, Sequence, Mapping], | |
ignore: List[str] = ['prev_state', 'prev_actor_state', 'prev_critic_state'] | |
) -> List[Any]: | |
""" | |
Overview: | |
Drag out batch_size collated data's batch size to decollate it, which is the reverse operation of \ | |
``default_collate``. | |
Arguments: | |
- batch (:obj:`Union[torch.Tensor, Sequence, Mapping]`): The collated data batch. It can be a tensor, \ | |
sequence, or mapping. | |
- ignore(:obj:`List[str]`): A list of names to be ignored. Only applicable if the input ``batch`` is a \ | |
dictionary. If a key is in this list, its value will remain the same without decollation. Defaults to \ | |
['prev_state', 'prev_actor_state', 'prev_critic_state']. | |
Returns: | |
- ret (:obj:`List[Any]`): A list with B elements, where B is the batch size. | |
Examples: | |
>>> batch = { | |
'a': [ | |
[1, 2, 3], | |
[4, 5, 6] | |
], | |
'b': [ | |
[7, 8, 9], | |
[10, 11, 12] | |
]} | |
>>> default_decollate(batch) | |
{ | |
0: {'a': [1, 2, 3], 'b': [7, 8, 9]}, | |
1: {'a': [4, 5, 6], 'b': [10, 11, 12]}, | |
} | |
""" | |
if isinstance(batch, torch.Tensor): | |
batch = torch.split(batch, 1, dim=0) | |
# Squeeze if the original batch's shape is like (B, dim1, dim2, ...); | |
# otherwise, directly return the list. | |
if len(batch[0].shape) > 1: | |
batch = [elem.squeeze(0) for elem in batch] | |
return list(batch) | |
elif isinstance(batch, Sequence): | |
return list(zip(*[default_decollate(e) for e in batch])) | |
elif isinstance(batch, Mapping): | |
tmp = {k: v if k in ignore else default_decollate(v) for k, v in batch.items()} | |
B = len(list(tmp.values())[0]) | |
return [{k: tmp[k][i] for k in tmp.keys()} for i in range(B)] | |
elif isinstance(batch, torch.distributions.Distribution): # For compatibility | |
return [None for _ in range(batch.batch_shape[0])] | |
raise TypeError("Not supported batch type: {}".format(type(batch))) | |