Spaces:
Sleeping
Sleeping
from .default_helper import deep_merge_dicts | |
from easydict import EasyDict | |
class Scheduler(object): | |
""" | |
Overview: | |
Update learning parameters when the trueskill metrics has stopped improving. | |
For example, models often benefits from reducing entropy weight once the learning process stagnates. | |
This scheduler reads a metrics quantity and if no improvement is seen for a 'patience' number of epochs, | |
the corresponding parameter is increased or decreased, which decides on the 'schedule_mode'. | |
Arguments: | |
- schedule_flag (:obj:`bool`): Indicates whether to use scheduler in training pipeline. | |
Default: False | |
- schedule_mode (:obj:`str`): One of 'reduce', 'add','multi','div'. The schecule_mode | |
decides the way of updating the parameters. Default:'reduce'. | |
- factor (:obj:`float`) : Amount (greater than 0) by which the parameter will be | |
increased/decreased. Default: 0.05 | |
- change_range (:obj:`list`): Indicates the minimum and maximum value | |
the parameter can reach respectively. Default: [-1,1] | |
- threshold (:obj:`float`): Threshold for measuring the new optimum, | |
to only focus on significant changes. Default: 1e-4. | |
- optimize_mode (:obj:`str`): One of 'min', 'max', which indicates the sign of | |
optimization objective. Dynamic_threshold = last_metrics + threshold in `max` | |
mode or last_metrics - threshold in `min` mode. Default: 'min' | |
- patience (:obj:`int`): Number of epochs with no improvement after which | |
the parameter will be updated. For example, if `patience = 2`, then we | |
will ignore the first 2 epochs with no improvement, and will only update | |
the parameter after the 3rd epoch if the metrics still hasn't improved then. | |
Default: 10. | |
- cooldown (:obj:`int`): Number of epochs to wait before resuming | |
normal operation after the parameter has been updated. Default: 0. | |
Interfaces: | |
__init__, update_param, step | |
Property: | |
in_cooldown, is_better | |
""" | |
config = dict( | |
schedule_flag=False, | |
schedule_mode='reduce', | |
factor=0.05, | |
change_range=[-1, 1], | |
threshold=1e-4, | |
optimize_mode='min', | |
patience=10, | |
cooldown=0, | |
) | |
def __init__(self, merged_scheduler_config: EasyDict) -> None: | |
""" | |
Overview: | |
Initialize the scheduler. | |
Arguments: | |
- merged_scheduler_config (:obj:`EasyDict`): the scheduler config, which merges the user | |
config and defaul config | |
""" | |
schedule_mode = merged_scheduler_config.schedule_mode | |
factor = merged_scheduler_config.factor | |
change_range = merged_scheduler_config.change_range | |
threshold = merged_scheduler_config.threshold | |
optimize_mode = merged_scheduler_config.optimize_mode | |
patience = merged_scheduler_config.patience | |
cooldown = merged_scheduler_config.cooldown | |
assert schedule_mode in [ | |
'reduce', 'add', 'multi', 'div' | |
], 'The schedule mode should be one of [\'reduce\', \'add\', \'multi\',\'div\']' | |
self.schedule_mode = schedule_mode | |
assert isinstance(factor, (float, int)), 'The factor should be a float/int number ' | |
assert factor > 0, 'The factor should be greater than 0' | |
self.factor = float(factor) | |
assert isinstance(change_range, | |
list) and len(change_range) == 2, 'The change_range should be a list with 2 float numbers' | |
assert (isinstance(change_range[0], (float, int))) and ( | |
isinstance(change_range[1], (float, int)) | |
), 'The change_range should be a list with 2 float/int numbers' | |
assert change_range[0] < change_range[1], 'The first num should be smaller than the second num' | |
self.change_range = change_range | |
assert isinstance(threshold, (float, int)), 'The threshold should be a float/int number' | |
self.threshold = threshold | |
assert optimize_mode in ['min', 'max'], 'The optimize_mode should be one of [\'min\', \'max\']' | |
self.optimize_mode = optimize_mode | |
assert isinstance(patience, int), 'The patience should be a integer greater than or equal to 0' | |
assert patience >= 0, 'The patience should be a integer greater than or equal to 0' | |
self.patience = patience | |
assert isinstance(cooldown, int), 'The cooldown_counter should be a integer greater than or equal to 0' | |
assert cooldown >= 0, 'The cooldown_counter should be a integer greater than or equal to 0' | |
self.cooldown = cooldown | |
self.cooldown_counter = cooldown | |
self.last_metrics = None | |
self.bad_epochs_num = 0 | |
def step(self, metrics: float, param: float) -> float: | |
""" | |
Overview: | |
Decides whether to update the scheduled parameter | |
Args: | |
- metrics (:obj:`float`): current input metrics | |
- param (:obj:`float`): parameter need to be updated | |
Returns: | |
- step_param (:obj:`float`): parameter after one step | |
""" | |
assert isinstance(metrics, float), 'The metrics should be converted to a float number' | |
cur_metrics = metrics | |
if self.is_better(cur_metrics): | |
self.bad_epochs_num = 0 | |
else: | |
self.bad_epochs_num += 1 | |
self.last_metrics = cur_metrics | |
if self.in_cooldown: | |
self.cooldown_counter -= 1 | |
self.bad_epochs_num = 0 # ignore any bad epochs in cooldown | |
if self.bad_epochs_num > self.patience: | |
param = self.update_param(param) | |
self.cooldown_counter = self.cooldown | |
self.bad_epochs_num = 0 | |
return param | |
def update_param(self, param: float) -> float: | |
""" | |
Overview: | |
update the scheduling parameter | |
Args: | |
- param (:obj:`float`): parameter need to be updated | |
Returns: | |
- updated param (:obj:`float`): parameter after updating | |
""" | |
schedule_fn = { | |
'reduce': lambda x, y, z: max(x - y, z[0]), | |
'add': lambda x, y, z: min(x + y, z[1]), | |
'multi': lambda x, y, z: min(x * y, z[1]) if y >= 1 else max(x * y, z[0]), | |
'div': lambda x, y, z: max(x / y, z[0]) if y >= 1 else min(x / y, z[1]), | |
} | |
schedule_mode_list = list(schedule_fn.keys()) | |
if self.schedule_mode in schedule_mode_list: | |
return schedule_fn[self.schedule_mode](param, self.factor, self.change_range) | |
else: | |
raise KeyError("invalid schedule_mode({}) in {}".format(self.schedule_mode, schedule_mode_list)) | |
def in_cooldown(self) -> bool: | |
""" | |
Overview: | |
Checks whether the scheduler is in cooldown peried. If in cooldown, the scheduler | |
will ignore any bad epochs. | |
""" | |
return self.cooldown_counter > 0 | |
def is_better(self, cur: float) -> bool: | |
""" | |
Overview: | |
Checks whether the current metrics is better than last matric with respect to threshold. | |
Args: | |
- cur (:obj:`float`): current metrics | |
""" | |
if self.last_metrics is None: | |
return True | |
elif self.optimize_mode == 'min': | |
return cur < self.last_metrics - self.threshold | |
elif self.optimize_mode == 'max': | |
return cur > self.last_metrics + self.threshold | |