Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from typing import Union, Optional, Dict | |
import numpy as np | |
from ding.model.common.head import DiscreteHead, RegressionHead, ReparameterizationHead | |
from ding.utils import SequenceType, squeeze | |
from ding.model.common.encoder import FCEncoder, ConvEncoder | |
from torch.distributions import Independent, Normal | |
class InverseDynamicsModel(nn.Module): | |
""" | |
InverseDynamicsModel: infering missing action information from state transition. | |
input and output: given pair of observation, return action (s0,s1 --> a0 if n=2) | |
""" | |
def __init__( | |
self, | |
obs_shape: Union[int, SequenceType], | |
action_shape: Union[int, SequenceType], | |
encoder_hidden_size_list: SequenceType = [60, 80, 100, 40], | |
action_space: str = "regression", | |
activation: Optional[nn.Module] = nn.LeakyReLU(), | |
norm_type: Optional[str] = None | |
) -> None: | |
r""" | |
Overview: | |
Init the Inverse Dynamics (encoder + head) Model according to input arguments. | |
Arguments: | |
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape, such as 8 or [4, 84, 84]. | |
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape, such as 6 or [2, 3, 3]. | |
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``, \ | |
the last element must match ``head_hidden_size``. | |
- action_space (:obj:`String`): Action space, such as 'regression', 'reparameterization', 'discrete'. | |
- activation (:obj:`Optional[nn.Module]`): The type of activation function in networks \ | |
if ``None`` then default set it to ``nn.LeakyReLU()`` refer to https://arxiv.org/abs/1805.01954 | |
- norm_type (:obj:`Optional[str]`): The type of normalization in networks, see \ | |
``ding.torch_utils.fc_block`` for more details. | |
""" | |
super(InverseDynamicsModel, self).__init__() | |
# For compatibility: 1, (1, ), [4, 32, 32] | |
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape) | |
# FC encoder: obs and obs[next] ,so input shape is obs_shape*2 | |
if isinstance(obs_shape, int) or len(obs_shape) == 1: | |
self.encoder = FCEncoder( | |
obs_shape * 2, encoder_hidden_size_list, activation=activation, norm_type=norm_type | |
) | |
elif len(obs_shape) == 3: | |
# FC encoder: obs and obs[next] ,so first channel need multiply 2 | |
obs_shape = (obs_shape[0] * 2, *obs_shape[1:]) | |
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type) | |
else: | |
raise RuntimeError( | |
"not support obs_shape for pre-defined encoder: {}, please customize your own Model".format(obs_shape) | |
) | |
self.action_space = action_space | |
assert self.action_space in ['regression', 'reparameterization', | |
'discrete'], "not supported action_space: {}".format(self.action_space) | |
if self.action_space == "regression": | |
self.header = RegressionHead( | |
encoder_hidden_size_list[-1], | |
action_shape, | |
final_tanh=False, | |
activation=activation, | |
norm_type=norm_type | |
) | |
elif self.action_space == "reparameterization": | |
self.header = ReparameterizationHead( | |
encoder_hidden_size_list[-1], | |
action_shape, | |
sigma_type='conditioned', | |
activation=activation, | |
norm_type=norm_type | |
) | |
elif self.action_space == "discrete": | |
self.header = DiscreteHead( | |
encoder_hidden_size_list[-1], action_shape, activation=activation, norm_type=norm_type | |
) | |
def forward(self, x: torch.Tensor) -> Dict: | |
if self.action_space == "regression": | |
x = self.encoder(x) | |
x = self.header(x) | |
return {'action': x['pred']} | |
elif self.action_space == "reparameterization": | |
x = self.encoder(x) | |
x = self.header(x) | |
mu, sigma = x['mu'], x['sigma'] | |
dist = Independent(Normal(mu, sigma), 1) | |
pred = dist.rsample() | |
action = torch.tanh(pred) | |
return {'logit': [mu, sigma], 'action': action} | |
elif self.action_space == "discrete": | |
x = self.encoder(x) | |
x = self.header(x) | |
return x | |
def predict_action(self, x: torch.Tensor) -> Dict: | |
if self.action_space == "discrete": | |
res = nn.Softmax(dim=-1) | |
action = torch.argmax(res(self.forward(x)['logit']), -1) | |
return {'action': action} | |
else: | |
return self.forward(x) | |
def train(self, training_set: dict, n_epoch: int, learning_rate: float, weight_decay: float): | |
r""" | |
Overview: | |
Train idm model, given pair of states return action (s_t,s_t+1,a_t) | |
Arguments: | |
- training_set (:obj:`dict`):states transition | |
- n_epoch (:obj:`int`): number of epoches | |
- learning_rate (:obj:`float`): learning rate for optimizer | |
- weight_decay (:obj:`float`): weight decay for optimizer | |
""" | |
if self.action_space == "discrete": | |
criterion = nn.CrossEntropyLoss() | |
else: | |
# criterion = nn.MSELoss() | |
criterion = nn.L1Loss() | |
optimizer = torch.optim.AdamW(self.parameters(), lr=learning_rate, weight_decay=weight_decay) | |
loss_list = [] | |
for itr in range(n_epoch): | |
data = training_set['obs'] | |
y = training_set['action'] | |
if self.action_space == "discrete": | |
y_pred = self.forward(data)['logit'] | |
else: | |
y_pred = self.forward(data)['action'] | |
loss = criterion(y_pred, y) | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
loss_list.append(loss.item()) | |
loss = np.mean(loss_list) | |
return loss | |