Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from ding.torch_utils import Swish | |
class StandardScaler(nn.Module): | |
def __init__(self, input_size: int): | |
super(StandardScaler, self).__init__() | |
self.register_buffer('std', torch.ones(1, input_size)) | |
self.register_buffer('mu', torch.zeros(1, input_size)) | |
def fit(self, data: torch.Tensor): | |
std, mu = torch.std_mean(data, dim=0, keepdim=True) | |
std[std < 1e-12] = 1 | |
self.std.data.mul_(0.0).add_(std) | |
self.mu.data.mul_(0.0).add_(mu) | |
def transform(self, data: torch.Tensor): | |
return (data - self.mu) / self.std | |
def inverse_transform(self, data: torch.Tensor): | |
return self.std * data + self.mu | |
class EnsembleFC(nn.Module): | |
__constants__ = ['in_features', 'out_features'] | |
in_features: int | |
out_features: int | |
ensemble_size: int | |
weight: torch.Tensor | |
def __init__(self, in_features: int, out_features: int, ensemble_size: int, weight_decay: float = 0.) -> None: | |
super(EnsembleFC, self).__init__() | |
self.in_features = in_features | |
self.out_features = out_features | |
self.ensemble_size = ensemble_size | |
self.weight = nn.Parameter(torch.zeros(ensemble_size, in_features, out_features)) | |
self.weight_decay = weight_decay | |
self.bias = nn.Parameter(torch.zeros(ensemble_size, 1, out_features)) | |
def forward(self, input: torch.Tensor) -> torch.Tensor: | |
assert input.shape[0] == self.ensemble_size and len(input.shape) == 3 | |
return torch.bmm(input, self.weight) + self.bias # w times x + b | |
def extra_repr(self) -> str: | |
return 'in_features={}, out_features={}, ensemble_size={}, weight_decay={}'.format( | |
self.in_features, self.out_features, self.ensemble_size, self.weight_decay | |
) | |
class EnsembleModel(nn.Module): | |
def __init__( | |
self, | |
state_size, | |
action_size, | |
reward_size, | |
ensemble_size, | |
hidden_size=200, | |
learning_rate=1e-3, | |
use_decay=False | |
): | |
super(EnsembleModel, self).__init__() | |
self.use_decay = use_decay | |
self.hidden_size = hidden_size | |
self.output_dim = state_size + reward_size | |
self.nn1 = EnsembleFC(state_size + action_size, hidden_size, ensemble_size, weight_decay=0.000025) | |
self.nn2 = EnsembleFC(hidden_size, hidden_size, ensemble_size, weight_decay=0.00005) | |
self.nn3 = EnsembleFC(hidden_size, hidden_size, ensemble_size, weight_decay=0.000075) | |
self.nn4 = EnsembleFC(hidden_size, hidden_size, ensemble_size, weight_decay=0.000075) | |
self.nn5 = EnsembleFC(hidden_size, self.output_dim * 2, ensemble_size, weight_decay=0.0001) | |
self.max_logvar = nn.Parameter(torch.ones(1, self.output_dim).float() * 0.5, requires_grad=False) | |
self.min_logvar = nn.Parameter(torch.ones(1, self.output_dim).float() * -10, requires_grad=False) | |
self.swish = Swish() | |
def init_weights(m: nn.Module): | |
def truncated_normal_init(t, mean: float = 0.0, std: float = 0.01): | |
torch.nn.init.normal_(t, mean=mean, std=std) | |
while True: | |
cond = torch.logical_or(t < mean - 2 * std, t > mean + 2 * std) | |
if not torch.sum(cond): | |
break | |
t = torch.where(cond, torch.nn.init.normal_(torch.ones(t.shape), mean=mean, std=std), t) | |
return t | |
if isinstance(m, nn.Linear) or isinstance(m, EnsembleFC): | |
input_dim = m.in_features | |
truncated_normal_init(m.weight, std=1 / (2 * np.sqrt(input_dim))) | |
m.bias.data.fill_(0.0) | |
self.apply(init_weights) | |
self.optimizer = torch.optim.Adam(self.parameters(), lr=learning_rate) | |
def forward(self, x: torch.Tensor, ret_log_var: bool = False): | |
x = self.swish(self.nn1(x)) | |
x = self.swish(self.nn2(x)) | |
x = self.swish(self.nn3(x)) | |
x = self.swish(self.nn4(x)) | |
x = self.nn5(x) | |
mean, logvar = x.chunk(2, dim=2) | |
logvar = self.max_logvar - F.softplus(self.max_logvar - logvar) | |
logvar = self.min_logvar + F.softplus(logvar - self.min_logvar) | |
if ret_log_var: | |
return mean, logvar | |
else: | |
return mean, torch.exp(logvar) | |
def get_decay_loss(self): | |
decay_loss = 0. | |
for m in self.modules(): | |
if isinstance(m, EnsembleFC): | |
decay_loss += m.weight_decay * torch.sum(torch.square(m.weight)) / 2. | |
return decay_loss | |
def loss(self, mean: torch.Tensor, logvar: torch.Tensor, labels: torch.Tensor): | |
""" | |
mean, logvar: Ensemble_size x N x dim | |
labels: Ensemble_size x N x dim | |
""" | |
assert len(mean.shape) == len(logvar.shape) == len(labels.shape) == 3 | |
inv_var = torch.exp(-logvar) | |
# Average over batch and dim, sum over ensembles. | |
mse_loss_inv = (torch.pow(mean - labels, 2) * inv_var).mean(dim=(1, 2)) | |
var_loss = logvar.mean(dim=(1, 2)) | |
with torch.no_grad(): | |
# Used only for logging. | |
mse_loss = torch.pow(mean - labels, 2).mean(dim=(1, 2)) | |
total_loss = mse_loss_inv.sum() + var_loss.sum() | |
return total_loss, mse_loss | |
def train(self, loss: torch.Tensor): | |
self.optimizer.zero_grad() | |
loss += 0.01 * torch.sum(self.max_logvar) - 0.01 * torch.sum(self.min_logvar) | |
if self.use_decay: | |
loss += self.get_decay_loss() | |
loss.backward() | |
self.optimizer.step() | |