Spaces:
Sleeping
Sleeping
import pytest | |
import torch | |
from torch import nn | |
from itertools import product | |
from easydict import EasyDict | |
from ding.world_model.ddppo import DDPPOWorldMode, get_batch_jacobian, get_neighbor_index | |
from ding.utils import deep_merge_dicts | |
# arguments | |
state_size = [16] | |
action_size = [16, 1] | |
args = list(product(*[state_size, action_size])) | |
class TestDDPPO: | |
def get_world_model(self, state_size, action_size): | |
cfg = DDPPOWorldMode.default_config() | |
cfg.model.max_epochs_since_update = 0 | |
cfg = deep_merge_dicts( | |
cfg, dict(cuda=False, model=dict(state_size=state_size, action_size=action_size, reward_size=1)) | |
) | |
fake_env = EasyDict(termination_fn=lambda obs: torch.zeros_like(obs.sum(-1)).bool()) | |
model = DDPPOWorldMode(cfg, fake_env, None) | |
model.serial_calc_nn = True | |
return model | |
def test_get_neighbor_index(self): | |
k = 2 | |
data = torch.tensor([[0, 0, 0], [0, 0, 1], [0, 0, -1], [5, 0, 0], [5, 0, 1], [5, 0, -1]]) | |
idx = get_neighbor_index(data, k, serial=True) | |
target_idx = torch.tensor([[2, 1], [0, 2], [0, 1], [5, 4], [3, 5], [3, 4]]) | |
assert (idx - target_idx).sum() == 0 | |
def test_get_batch_jacobian(self): | |
B, in_dim, out_dim = 64, 4, 8 | |
net = nn.Linear(in_dim, out_dim) | |
x = torch.randn(B, in_dim) | |
jacobian = get_batch_jacobian(net, x, out_dim) | |
assert jacobian.shape == (B, out_dim, in_dim) | |
def test_get_jacobian(self, state_size, action_size): | |
B, ensemble_size = 64, 7 | |
model = self.get_world_model(state_size, action_size) | |
train_input_reg = torch.randn(ensemble_size, B, state_size + action_size) | |
jacobian = model._get_jacobian(model.gradient_model, train_input_reg) | |
assert jacobian.shape == (ensemble_size, B, state_size + 1, state_size + action_size) | |
assert jacobian.requires_grad | |
def test_step(self, state_size, action_size): | |
states = torch.rand(128, state_size) | |
actions = torch.rand(128, action_size) | |
model = self.get_world_model(state_size, action_size) | |
model.elite_model_idxes = [0, 1] | |
rewards, next_obs, dones = model.step(states, actions) | |
assert rewards.shape == (128, ) | |
assert next_obs.shape == (128, state_size) | |
assert dones.shape == (128, ) | |
def test_train_rollout_model(self, state_size, action_size): | |
states = torch.rand(1280, state_size) | |
actions = torch.rand(1280, action_size) | |
next_states = states + actions.mean(1, keepdim=True) | |
rewards = next_states.mean(1, keepdim=True).repeat(1, 1) | |
inputs = torch.cat([states, actions], dim=1) | |
labels = torch.cat([rewards, next_states], dim=1) | |
model = self.get_world_model(state_size, action_size) | |
model._train_rollout_model(inputs[:64], labels[:64]) | |
def test_train_graident_model(self, state_size, action_size): | |
states = torch.rand(1280, state_size) | |
actions = torch.rand(1280, action_size) | |
next_states = states + actions.mean(1, keepdim=True) | |
rewards = next_states.mean(1, keepdim=True) | |
inputs = torch.cat([states, actions], dim=1) | |
labels = torch.cat([rewards, next_states], dim=1) | |
model = self.get_world_model(state_size, action_size) | |
model._train_gradient_model(inputs[:64], labels[:64], inputs[:64], labels[:64]) | |
def test_others(self, state_size, action_size): | |
states = torch.rand(1280, state_size) | |
actions = torch.rand(1280, action_size) | |
next_states = states + actions.mean(1, keepdim=True) | |
rewards = next_states.mean(1, keepdim=True) | |
inputs = torch.cat([states, actions], dim=1) | |
labels = torch.cat([rewards, next_states], dim=1) | |
model = self.get_world_model(state_size, action_size) | |
model._train_rollout_model(inputs[:64], labels[:64]) | |
model._train_gradient_model(inputs[:64], labels[:64], inputs[:64], labels[:64]) | |
model._save_states() | |
model._load_states() | |
model._save_best(0, [1, 2, 3]) | |