Spaces:
Sleeping
Sleeping
import pytest | |
import torch | |
from itertools import product | |
from easydict import EasyDict | |
from ding.world_model.dreamer import DREAMERWorldModel | |
from ding.utils import deep_merge_dicts | |
# arguments | |
state_size = [[3, 64, 64]] | |
action_size = [6, 1] | |
args = list(product(*[state_size, action_size])) | |
class TestDREAMER: | |
def get_world_model(self, state_size, action_size): | |
cfg = DREAMERWorldModel.default_config() | |
cfg.model.max_epochs_since_update = 0 | |
cfg = deep_merge_dicts( | |
cfg, dict(cuda=False, model=dict(state_size=state_size, action_size=action_size, reward_size=1)) | |
) | |
fake_env = EasyDict(termination_fn=lambda obs: torch.zeros_like(obs.sum(-1)).bool()) | |
return DREAMERWorldModel(cfg, fake_env, None) | |
def test_train(self, state_size, action_size): | |
states = torch.rand(1280, *state_size) | |
actions = torch.rand(1280, action_size) | |
model = self.get_world_model(state_size, action_size) | |