Spaces:
Sleeping
Sleeping
import torch | |
import pytest | |
from itertools import product | |
from ding.world_model.idm import InverseDynamicsModel | |
from ding.torch_utils import is_differentiable | |
from ding.utils import squeeze | |
B = 4 | |
obs_shape_arg = [4, (8, ), (9, 64, 64)] | |
encoder_hidden_size_list = [10, 20, 10] | |
action_shape_arg = [6, (6, ), [6]] | |
args = list(product(*[obs_shape_arg, action_shape_arg, ['regression', 'reparameterization']])) | |
class TestContinousIDM: | |
def test_continuous_idm(self, obs_shape, action_shape, action_space): | |
model = InverseDynamicsModel( | |
obs_shape=obs_shape, | |
action_shape=action_shape, | |
encoder_hidden_size_list=encoder_hidden_size_list, | |
action_space=action_space, | |
) | |
inputs = {} | |
if isinstance(obs_shape, int): | |
inputs['obs'] = torch.randn(B, obs_shape * 2) | |
else: | |
inputs['obs'] = torch.randn(B, *(obs_shape[0] * 2, *obs_shape[1:])) | |
if isinstance(action_shape, int): | |
inputs['action'] = torch.randn(B, action_shape) | |
else: | |
inputs['action'] = torch.randn(B, *action_shape) | |
if action_space == 'regression': | |
action = model.predict_action(inputs['obs'])['action'] | |
if isinstance(action_shape, int): | |
assert action.shape == (B, action_shape) | |
else: | |
assert action.shape == (B, *action_shape) | |
assert action.eq(action.clamp(-1, 1)).all() | |
elif action_space == 'reparameterization': | |
(mu, sigma) = model.predict_action(inputs['obs'])['logit'] | |
action = model.predict_action(inputs['obs'])['action'] | |
if isinstance(action_shape, int): | |
assert mu.shape == (B, action_shape) | |
assert sigma.shape == (B, action_shape) | |
assert action.shape == (B, action_shape) | |
else: | |
assert mu.shape == (B, *action_shape) | |
assert sigma.shape == (B, *action_shape) | |
assert action.shape == (B, *action_shape) | |
loss = model.train(inputs, n_epoch=10, learning_rate=0.01, weight_decay=1e-4) | |
assert isinstance(loss, float) | |
B = 4 | |
obs_shape = [4, (8, ), (4, 64, 64)] | |
action_shape = [6, (6, ), [6]] | |
encoder_hidden_size_list = [10, 20, 10] | |
args = list(product(*[obs_shape, action_shape])) | |
action_space = 'discrete' | |
class TestDiscreteIDM: | |
def test_discrete_idm(self, obs_shape, action_shape): | |
model = InverseDynamicsModel( | |
obs_shape=obs_shape, | |
action_shape=action_shape, | |
encoder_hidden_size_list=encoder_hidden_size_list, | |
action_space=action_space, | |
) | |
inputs = {} | |
if isinstance(obs_shape, int): | |
inputs['obs'] = torch.randn(B, obs_shape * 2) | |
else: | |
obs_shape = (obs_shape[0] * 2, *obs_shape[1:]) | |
inputs['obs'] = torch.randn(B, *obs_shape) | |
# inputs['action'] = torch.randint(action_shape, B) | |
if isinstance(action_shape, int): | |
inputs['action'] = torch.randint(action_shape, (B, )) | |
else: | |
inputs['action'] = torch.randint(action_shape[0], (B, )) | |
outputs = model.forward(inputs['obs']) | |
assert isinstance(outputs, dict) | |
if isinstance(action_shape, int): | |
assert outputs['logit'].shape == (B, action_shape) | |
else: | |
assert outputs['logit'].shape == (B, *action_shape) | |
# self.test_train(model, inputs) | |
action = model.predict_action(inputs['obs'])['action'] | |
assert action.shape == (B, ) | |
loss = model.train(inputs, n_epoch=10, learning_rate=0.01, weight_decay=1e-4) | |
assert isinstance(loss, float) | |