Spaces:
Sleeping
Sleeping
from easydict import EasyDict | |
collector_env_num = 32 | |
evaluator_env_num = 5 | |
nstep = 5 | |
max_env_step = int(10e6) | |
pitfall_ngu_config = dict( | |
# Note: | |
# 1. at least 1e10 timesteps, i.e., 10000 million, the reward may increase, please be patient. | |
# 2. the larger unroll_lenth and replay buffer size may have better results, but also require more memory. | |
exp_name='pitfall_ngu_seed0', | |
env=dict( | |
collector_env_num=collector_env_num, | |
evaluator_env_num=evaluator_env_num, | |
n_evaluator_episode=5, | |
env_id='PitfallNoFrameskip-v4', | |
#'ALE/Pitfall-v5' is available. But special setting is needed after gym make. | |
obs_plus_prev_action_reward=True, # use specific env wrapper for ngu policy | |
stop_value=int(1e5), | |
frame_stack=4, | |
), | |
rnd_reward_model=dict( | |
intrinsic_reward_type='add', # 'assign' | |
learning_rate=1e-4, | |
obs_shape=[4, 84, 84], | |
action_shape=18, | |
batch_size=320, | |
update_per_collect=10, | |
only_use_last_five_frames_for_icm_rnd=False, | |
clear_buffer_per_iters=10, | |
nstep=nstep, | |
hidden_size_list=[128, 128, 64], | |
type='rnd-ngu', | |
), | |
episodic_reward_model=dict( | |
# means if using rescale trick to the last non-zero reward | |
# when combing extrinsic and intrinsic reward. | |
# the rescale trick only used in: | |
# 1. sparse reward env minigrid, in which the last non-zero reward is a strong positive signal | |
# 2. the last reward of each episode directly reflects the agent's completion of the task, e.g. lunarlander | |
# Note that the ngu intrinsic reward is a positive value (max value is 5), in these envs, | |
# the last non-zero reward should not be overwhelmed by intrinsic rewards, so we need rescale the | |
# original last nonzero extrinsic reward. | |
# please refer to ngu_reward_model for details. | |
last_nonzero_reward_rescale=False, | |
# means the rescale value for the last non-zero reward, only used when last_nonzero_reward_rescale is True | |
# please refer to ngu_reward_model for details. | |
last_nonzero_reward_weight=1, | |
intrinsic_reward_type='add', | |
learning_rate=1e-4, | |
obs_shape=[4, 84, 84], | |
action_shape=18, | |
batch_size=320, | |
update_per_collect=10, | |
only_use_last_five_frames_for_icm_rnd=False, | |
clear_buffer_per_iters=10, | |
nstep=nstep, | |
hidden_size_list=[128, 128, 64], | |
type='episodic', | |
), | |
policy=dict( | |
cuda=True, | |
on_policy=False, | |
priority=True, | |
priority_IS_weight=True, | |
discount_factor=0.997, | |
nstep=nstep, | |
burnin_step=20, | |
# (int) <learn_unroll_len> is the total length of [sequence sample] minus | |
# the length of burnin part in [sequence sample], | |
# i.e., <sequence sample length> = <unroll_len> = <burnin_step> + <learn_unroll_len> | |
learn_unroll_len=80, # set this key according to the episode length | |
model=dict( | |
obs_shape=[4, 84, 84], | |
action_shape=18, | |
encoder_hidden_size_list=[128, 128, 512], | |
collector_env_num=collector_env_num, | |
), | |
learn=dict( | |
update_per_collect=8, | |
batch_size=64, | |
learning_rate=0.0005, | |
target_update_theta=0.001, | |
), | |
collect=dict( | |
# NOTE: It is important that set key traj_len_inf=True here, | |
# to make sure self._traj_len=INF in serial_sample_collector.py. | |
# In sequence-based policy, for each collect_env, | |
# we want to collect data of length self._traj_len=INF | |
# unless the episode enters the 'done' state. | |
# In each collect phase, we collect a total of <n_sample> sequence samples. | |
n_sample=32, | |
traj_len_inf=True, | |
env_num=collector_env_num, | |
), | |
eval=dict(env_num=evaluator_env_num, ), | |
other=dict( | |
eps=dict( | |
type='exp', | |
start=0.95, | |
end=0.05, | |
decay=1e5, | |
), | |
replay_buffer=dict( | |
replay_buffer_size=int(3e3), | |
# (Float type) How much prioritization is used: 0 means no prioritization while 1 means full prioritization | |
alpha=0.6, | |
# (Float type) How much correction is used: 0 means no correction while 1 means full correction | |
beta=0.4, | |
) | |
), | |
), | |
) | |
pitfall_ngu_config = EasyDict(pitfall_ngu_config) | |
main_config = pitfall_ngu_config | |
pitfall_ngu_create_config = dict( | |
env=dict( | |
type='atari', | |
import_names=['dizoo.atari.envs.atari_env'], | |
), | |
env_manager=dict(type='subprocess'), | |
policy=dict(type='ngu'), | |
rnd_reward_model=dict(type='rnd-ngu'), | |
episodic_reward_model=dict(type='episodic'), | |
) | |
pitfall_ngu_create_config = EasyDict(pitfall_ngu_create_config) | |
create_config = pitfall_ngu_create_config | |
if __name__ == "__main__": | |
from ding.entry import serial_pipeline_reward_model_ngu | |
serial_pipeline_reward_model_ngu([main_config, create_config], seed=0, max_env_step=max_env_step) | |