Spaces:
Sleeping
Sleeping
from easydict import EasyDict | |
spaceinvaders_impala_config = dict( | |
exp_name='impala_log/spaceinvaders_impala_seed0', | |
env=dict( | |
collector_env_num=8, | |
evaluator_env_num=8, | |
n_evaluator_episode=8, | |
stop_value=10000000000, | |
env_id='SpaceInvadersNoFrameskip-v4', | |
#'ALE/SpaceInvaders-v5' is available. But special setting is needed after gym make. | |
frame_stack=4, | |
# manager=dict(shared_memory=False, ) | |
), | |
policy=dict( | |
cuda=True, | |
# (int) the trajectory length to calculate v-trace target | |
unroll_len=32, | |
random_collect_size=500, | |
model=dict( | |
obs_shape=[4, 84, 84], | |
action_shape=6, | |
encoder_hidden_size_list=[128, 128, 256, 256], | |
critic_head_hidden_size=256, | |
critic_head_layer_num=3, | |
actor_head_hidden_size=256, | |
actor_head_layer_num=3, | |
), | |
learn=dict( | |
# (int) collect n_sample data, train model update_per_collect times | |
# here we follow impala serial pipeline | |
update_per_collect=2, # update_per_collect show be in [1, 10] | |
# (int) the number of data for a train iteration | |
batch_size=128, | |
grad_clip_type='clip_norm', | |
clip_value=5, | |
learning_rate=0.0006, | |
# (float) loss weight of the value network, the weight of policy network is set to 1 | |
value_weight=0.5, | |
# (float) loss weight of the entropy regularization, the weight of policy network is set to 1 | |
entropy_weight=0.01, | |
# (float) discount factor for future reward, defaults int [0, 1] | |
discount_factor=0.99, | |
# (float) additional discounting parameter | |
lambda_=0.95, | |
# (float) clip ratio of importance weights | |
rho_clip_ratio=1.0, | |
# (float) clip ratio of importance weights | |
c_clip_ratio=1.0, | |
# (float) clip ratio of importance sampling | |
rho_pg_clip_ratio=1.0, | |
), | |
collect=dict( | |
# (int) collect n_sample data, train model n_iteration times | |
n_sample=16, | |
collector=dict(collect_print_freq=1000, ), | |
), | |
eval=dict(evaluator=dict(eval_freq=500, )), | |
other=dict(replay_buffer=dict(replay_buffer_size=100000, sliced=True), ), | |
), | |
) | |
spaceinvaders_impala_config = EasyDict(spaceinvaders_impala_config) | |
main_config = spaceinvaders_impala_config | |
spaceinvaders_impala_create_config = dict( | |
env=dict( | |
type='atari', | |
import_names=['dizoo.atari.envs.atari_env'], | |
), | |
env_manager=dict(type='subprocess'), | |
policy=dict(type='impala'), | |
replay_buffer=dict(type='naive'), | |
) | |
spaceinvaders_impala_create_config = EasyDict(spaceinvaders_impala_create_config) | |
create_config = spaceinvaders_impala_create_config | |
if __name__ == '__main__': | |
# or you can enter ding -m serial -c spaceinvaders_impala_config.py -s 0 | |
from ding.entry import serial_pipeline | |
serial_pipeline((main_config, create_config), seed=0) | |