Spaces:
Sleeping
Sleeping
import torch.nn as nn | |
import torch.distributed as dist | |
from ditk import logging | |
from ding.model import DecisionTransformer | |
from ding.policy import DTPolicy | |
from ding.envs import SubprocessEnvManagerV2 | |
from ding.envs import AllinObsWrapper | |
from ding.data import create_dataset | |
from ding.config import compile_config | |
from ding.framework import task, ding_init | |
from ding.framework.context import OfflineRLContext | |
from ding.framework.middleware import interaction_evaluator, trainer, CkptSaver, offline_logger, termination_checker, \ | |
OfflineMemoryDataFetcher | |
from ding.utils import set_pkg_seed, DDPContext, to_ddp_config | |
from dizoo.atari.envs import AtariEnv | |
from dizoo.atari.config.serial.pong.pong_dt_config import main_config, create_config | |
def main(): | |
# If you don't have offline data, you need to prepare if first and set the data_path in config | |
# For demostration, we also can train a RL policy (e.g. SAC) and collect some data | |
logging.getLogger().setLevel(logging.INFO) | |
with DDPContext(): | |
cmain_config = to_ddp_config(main_config) | |
cfg = compile_config(cmain_config, create_cfg=create_config, auto=True) | |
ding_init(cfg) | |
with task.start(async_mode=False, ctx=OfflineRLContext()): | |
evaluator_env = SubprocessEnvManagerV2( | |
env_fn=[lambda: AllinObsWrapper(AtariEnv(cfg.env)) for _ in range(cfg.env.evaluator_env_num)], | |
cfg=cfg.env.manager | |
) | |
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) | |
dataset = create_dataset(cfg) | |
cfg.policy.model.max_timestep = dataset.get_max_timestep() | |
state_encoder = nn.Sequential( | |
nn.Conv2d(4, 32, 8, stride=4, padding=0), nn.ReLU(), nn.Conv2d(32, 64, 4, stride=2, padding=0), | |
nn.ReLU(), nn.Conv2d(64, 64, 3, stride=1, padding=0), nn.ReLU(), nn.Flatten(), | |
nn.Linear(3136, cfg.policy.model.h_dim), nn.Tanh() | |
) | |
model = DecisionTransformer(**cfg.policy.model, state_encoder=state_encoder) | |
# model.parallelize() | |
policy = DTPolicy(cfg.policy, model=model) | |
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env)) | |
task.use(OfflineMemoryDataFetcher(cfg, dataset)) | |
task.use(trainer(cfg, policy.learn_mode)) | |
task.use(termination_checker(max_train_iter=3e4)) | |
task.use(CkptSaver(policy, cfg.exp_name, train_freq=100)) | |
task.use(offline_logger()) | |
task.run() | |
if __name__ == "__main__": | |
main() | |