Spaces:
Sleeping
Sleeping
from typing import Any, List, Union, Sequence, Optional | |
import copy | |
import numpy as np | |
import gym | |
from ding.envs import BaseEnv, BaseEnvTimestep, update_shape | |
from ding.utils import ENV_REGISTRY | |
from ding.torch_utils import to_tensor, to_ndarray, to_list | |
from .atari_wrappers import wrap_deepmind, wrap_deepmind_mr | |
from ding.envs import ObsPlusPrevActRewWrapper | |
class AtariEnv(BaseEnv): | |
def __init__(self, cfg: dict) -> None: | |
self._cfg = cfg | |
self._init_flag = False | |
self._replay_path = None | |
def reset(self) -> np.ndarray: | |
if not self._init_flag: | |
self._env = self._make_env() | |
if self._replay_path is not None: | |
self._env = gym.wrappers.RecordVideo( | |
self._env, | |
video_folder=self._replay_path, | |
episode_trigger=lambda episode_id: True, | |
name_prefix='rl-video-{}'.format(id(self)) | |
) | |
if hasattr(self._cfg, 'obs_plus_prev_action_reward') and self._cfg.obs_plus_prev_action_reward: | |
self._env = ObsPlusPrevActRewWrapper(self._env) | |
self._observation_space = self._env.observation_space | |
self._action_space = self._env.action_space | |
self._reward_space = gym.spaces.Box( | |
low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32 | |
) | |
self._init_flag = True | |
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: | |
np_seed = 100 * np.random.randint(1, 1000) | |
self._env.seed(self._seed + np_seed) | |
elif hasattr(self, '_seed'): | |
self._env.seed(self._seed) | |
obs = self._env.reset() | |
obs = to_ndarray(obs) | |
self._eval_episode_return = 0. | |
return obs | |
def close(self) -> None: | |
if self._init_flag: | |
self._env.close() | |
self._init_flag = False | |
def seed(self, seed: int, dynamic_seed: bool = True) -> None: | |
self._seed = seed | |
self._dynamic_seed = dynamic_seed | |
np.random.seed(self._seed) | |
def step(self, action: np.ndarray) -> BaseEnvTimestep: | |
assert isinstance(action, np.ndarray), type(action) | |
action = action.item() | |
obs, rew, done, info = self._env.step(action) | |
# self._env.render() | |
self._eval_episode_return += rew | |
obs = to_ndarray(obs) | |
rew = to_ndarray([rew]).astype(np.float32) # wrapped to be transferred to a Tensor with shape (1,) | |
if done: | |
info['eval_episode_return'] = self._eval_episode_return | |
return BaseEnvTimestep(obs, rew, done, info) | |
def enable_save_replay(self, replay_path: Optional[str] = None) -> None: | |
if replay_path is None: | |
replay_path = './video' | |
self._replay_path = replay_path | |
def random_action(self) -> np.ndarray: | |
random_action = self.action_space.sample() | |
random_action = to_ndarray([random_action], dtype=np.int64) | |
return random_action | |
def observation_space(self) -> gym.spaces.Space: | |
return self._observation_space | |
def action_space(self) -> gym.spaces.Space: | |
return self._action_space | |
def reward_space(self) -> gym.spaces.Space: | |
return self._reward_space | |
def _make_env(self): | |
return wrap_deepmind( | |
self._cfg.env_id, | |
frame_stack=self._cfg.frame_stack, | |
episode_life=self._cfg.is_train, | |
clip_rewards=self._cfg.is_train | |
) | |
def __repr__(self) -> str: | |
return "DI-engine Atari Env({})".format(self._cfg.env_id) | |
def create_collector_env_cfg(cfg: dict) -> List[dict]: | |
collector_env_num = cfg.pop('collector_env_num') | |
cfg = copy.deepcopy(cfg) | |
cfg.is_train = True | |
return [cfg for _ in range(collector_env_num)] | |
def create_evaluator_env_cfg(cfg: dict) -> List[dict]: | |
evaluator_env_num = cfg.pop('evaluator_env_num') | |
cfg = copy.deepcopy(cfg) | |
cfg.is_train = False | |
return [cfg for _ in range(evaluator_env_num)] | |
class AtariEnvMR(AtariEnv): | |
def reset(self) -> np.ndarray: | |
if not self._init_flag: | |
self._env = self._make_env() | |
self._observation_space = self._env.observation_space | |
self._action_space = self._env.action_space | |
self._reward_space = gym.spaces.Box( | |
low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32 | |
) | |
self._init_flag = True | |
if hasattr(self, '_seed'): | |
np_seed = 100 * np.random.randint(1, 1000) | |
self._env.seed(self._seed + np_seed) | |
obs = self._env.reset() | |
obs = to_ndarray(obs) | |
self._eval_episode_return = 0. | |
return obs | |
def _make_env(self): | |
return wrap_deepmind_mr( | |
self._cfg.env_id, | |
frame_stack=self._cfg.frame_stack, | |
episode_life=self._cfg.is_train, | |
clip_rewards=self._cfg.is_train | |
) | |