Spaces:
Sleeping
Sleeping
import pytest | |
import numpy as np | |
import gym | |
from easydict import EasyDict | |
import atari_py | |
from dizoo.atari.envs import AtariEnv, AtariEnvMR | |
class TestAtariEnv: | |
def test_pong(self): | |
cfg = {'env_id': 'PongNoFrameskip-v4', 'frame_stack': 4, 'is_train': True} | |
cfg = EasyDict(cfg) | |
pong_env = AtariEnv(cfg) | |
pong_env.seed(0) | |
obs = pong_env.reset() | |
assert obs.shape == (cfg.frame_stack, 84, 84) | |
act_dim = pong_env.action_space.n | |
i = 0 | |
while True: | |
# Both ``env.random_action()``, and utilizing ``np.random`` as well as action space, | |
# can generate legal random action. | |
if i < 10: | |
random_action = np.random.choice(range(act_dim), size=(1, )) | |
i += 1 | |
else: | |
random_action = pong_env.random_action() | |
timestep = pong_env.step(random_action) | |
assert timestep.obs.shape == (cfg.frame_stack, 84, 84) | |
assert timestep.reward.shape == (1, ) | |
if timestep.done: | |
assert 'eval_episode_return' in timestep.info, timestep.info | |
break | |
print(pong_env.observation_space, pong_env.action_space, pong_env.reward_space) | |
print('eval_episode_return: {}'.format(timestep.info['eval_episode_return'])) | |
pong_env.close() | |
def test_montezuma_revenge(self): | |
cfg = {'env_id': 'MontezumaRevengeDeterministic-v4', 'frame_stack': 4, 'is_train': True} | |
cfg = EasyDict(cfg) | |
mr_env = AtariEnvMR(cfg) | |
mr_env.seed(0) | |
obs = mr_env.reset() | |
assert obs.shape == (cfg.frame_stack, 84, 84) | |
act_dim = mr_env.action_space.n | |
i = 0 | |
while True: | |
if i < 10: | |
random_action = np.random.choice(range(act_dim), size=(1, )) | |
i += 1 | |
else: | |
random_action = mr_env.random_action() | |
timestep = mr_env.step(random_action) | |
assert timestep.obs.shape == (cfg.frame_stack, 84, 84) | |
assert timestep.reward.shape == (1, ) | |
if timestep.done: | |
assert 'eval_episode_return' in timestep.info, timestep.info | |
break | |
print(mr_env.observation_space, mr_env.action_space, mr_env.reward_space) | |
print('eval_episode_return: {}'.format(timestep.info['eval_episode_return'])) | |
mr_env.close() | |