Spaces:
Sleeping
Sleeping
from easydict import EasyDict | |
import torch | |
import torch.nn as nn | |
from ding.model.common import FCEncoder, ReparameterizationHead | |
bipedalwalker_ppo_config = dict( | |
exp_name='bipedalwalker_ppopg', | |
env=dict( | |
env_id='BipedalWalker-v3', | |
collector_env_num=8, | |
evaluator_env_num=5, | |
# (bool) Scale output action into legal range. | |
act_scale=True, | |
n_evaluator_episode=5, | |
stop_value=500, | |
rew_clip=True, | |
), | |
policy=dict( | |
cuda=True, | |
action_space='continuous', | |
model=dict( | |
obs_shape=24, | |
action_shape=4, | |
), | |
learn=dict( | |
epoch_per_collect=10, | |
batch_size=64, | |
learning_rate=3e-4, | |
entropy_weight=0.0001, | |
clip_ratio=0.2, | |
adv_norm=True, | |
), | |
collect=dict( | |
n_episode=16, | |
discount_factor=0.99, | |
collector=dict(get_train_sample=True), | |
), | |
), | |
) | |
bipedalwalker_ppo_config = EasyDict(bipedalwalker_ppo_config) | |
main_config = bipedalwalker_ppo_config | |
bipedalwalker_ppo_create_config = dict( | |
env=dict( | |
type='bipedalwalker', | |
import_names=['dizoo.box2d.bipedalwalker.envs.bipedalwalker_env'], | |
), | |
env_manager=dict(type='subprocess'), | |
policy=dict(type='ppo_pg'), | |
collector=dict(type='episode'), | |
) | |
bipedalwalker_ppo_create_config = EasyDict(bipedalwalker_ppo_create_config) | |
create_config = bipedalwalker_ppo_create_config | |
class PPOPGContinuousModel(nn.Module): | |
def __init__(self, obs_shape, action_shape): | |
super(PPOPGContinuousModel, self).__init__() | |
self.encoder = nn.Sequential(nn.Linear(obs_shape, 64), nn.Tanh()) | |
self.head = ReparameterizationHead( | |
hidden_size=64, | |
output_size=action_shape, | |
layer_num=2, | |
sigma_type='conditioned', | |
activation=nn.Tanh(), | |
) | |
def forward(self, inputs): | |
x = self.encoder(inputs) | |
x = self.head(x) | |
return {'logit': x} | |
if __name__ == "__main__": | |
# or you can enter `ding -m serial_onpolicy -c bipedalwalker_ppo_config.py -s 0` | |
from ding.entry import serial_pipeline_onpolicy | |
from copy import deepcopy | |
for seed in [1, 2, 3]: | |
new_main_config = deepcopy(main_config) | |
new_main_config.exp_name += "_seed{}".format(seed) | |
model = PPOPGContinuousModel(new_main_config.policy.model.obs_shape, new_main_config.policy.model.action_shape) | |
serial_pipeline_onpolicy( | |
[new_main_config, deepcopy(create_config)], seed=seed, max_env_step=int(5e6), model=model | |
) | |