Spaces:
Sleeping
Sleeping
from typing import Any, List, Union, Optional | |
import time | |
import gym | |
import numpy as np | |
from ding.envs import BaseEnv, BaseEnvTimestep, FrameStackWrapper | |
from ding.torch_utils import to_ndarray, to_list | |
from ding.envs.common.common_function import affine_transform | |
from ding.utils import ENV_REGISTRY | |
class BipedalWalkerEnv(BaseEnv): | |
def __init__(self, cfg: dict) -> None: | |
self._cfg = cfg | |
self._init_flag = False | |
self._act_scale = cfg.act_scale | |
self._rew_clip = cfg.rew_clip | |
if "replay_path" in cfg: | |
self._replay_path = cfg.replay_path | |
else: | |
self._replay_path = None | |
def reset(self) -> np.ndarray: | |
if not self._init_flag: | |
self._env = gym.make('BipedalWalker-v3') | |
self._observation_space = self._env.observation_space | |
self._action_space = self._env.action_space | |
self._reward_space = gym.spaces.Box( | |
low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32 | |
) | |
self._init_flag = True | |
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: | |
np_seed = 100 * np.random.randint(1, 1000) | |
self._env.seed(self._seed + np_seed) | |
elif hasattr(self, '_seed'): | |
self._env.seed(self._seed) | |
if self._replay_path is not None: | |
self._env = gym.wrappers.RecordVideo( | |
self._env, | |
video_folder=self._replay_path, | |
episode_trigger=lambda episode_id: True, | |
name_prefix='rl-video-{}'.format(id(self)) | |
) | |
self._eval_episode_return = 0 | |
obs = self._env.reset() | |
obs = to_ndarray(obs).astype(np.float32) | |
return obs | |
def close(self) -> None: | |
if self._init_flag: | |
self._env.close() | |
self._init_flag = False | |
def render(self) -> None: | |
self._env.render() | |
def seed(self, seed: int, dynamic_seed: bool = True) -> None: | |
self._seed = seed | |
self._dynamic_seed = dynamic_seed | |
np.random.seed(self._seed) | |
def step(self, action: np.ndarray) -> BaseEnvTimestep: | |
assert isinstance(action, np.ndarray), type(action) | |
if action.shape == (1, ): | |
action = action.squeeze() # 0-dim array | |
if self._act_scale: | |
action = affine_transform(action, min_val=self.action_space.low, max_val=self.action_space.high) | |
obs, rew, done, info = self._env.step(action) | |
self._eval_episode_return += rew | |
if self._rew_clip: | |
rew = max(-10, rew) | |
rew = np.float32(rew) | |
if done: | |
info['eval_episode_return'] = self._eval_episode_return | |
obs = to_ndarray(obs).astype(np.float32) | |
rew = to_ndarray([rew]) # wrapped to be transfered to a array with shape (1,) | |
return BaseEnvTimestep(obs, rew, done, info) | |
def enable_save_replay(self, replay_path: Optional[str] = None) -> None: | |
if replay_path is None: | |
replay_path = './video' | |
self._replay_path = replay_path | |
def random_action(self) -> np.ndarray: | |
random_action = self.action_space.sample() | |
if isinstance(random_action, np.ndarray): | |
pass | |
elif isinstance(random_action, int): | |
random_action = to_ndarray([random_action], dtype=np.int64) | |
return random_action | |
def observation_space(self) -> gym.spaces.Space: | |
return self._observation_space | |
def action_space(self) -> gym.spaces.Space: | |
return self._action_space | |
def reward_space(self) -> gym.spaces.Space: | |
return self._reward_space | |
def __repr__(self) -> str: | |
return "DI-engine BipedalWalker Env" | |