Spaces:
Sleeping
Sleeping
from easydict import EasyDict | |
lunarlander_dqfd_config = dict( | |
exp_name='lunarlander_dqfd_seed0', | |
env=dict( | |
# Whether to use shared memory. Only effective if "env_manager_type" is 'subprocess' | |
collector_env_num=8, | |
evaluator_env_num=8, | |
env_id='LunarLander-v2', | |
n_evaluator_episode=8, | |
stop_value=200, | |
), | |
policy=dict( | |
cuda=True, | |
model=dict( | |
obs_shape=8, | |
action_shape=4, | |
encoder_hidden_size_list=[512, 64], | |
dueling=True, | |
), | |
nstep=3, | |
discount_factor=0.97, | |
learn=dict( | |
batch_size=64, | |
learning_rate=0.001, | |
lambda1=1.0, | |
lambda2=1.0, | |
lambda3=1e-5, | |
per_train_iter_k=10, | |
expert_replay_buffer_size=10000, # justify the buffer size of the expert buffer | |
), | |
collect=dict( | |
n_sample=64, | |
# Users should add their own model path here. Model path should lead to a model. | |
# Absolute path is recommended. | |
# In DI-engine, it is ``exp_name/ckpt/ckpt_best.pth.tar``. | |
model_path='model_path_placeholder', | |
# Cut trajectories into pieces with length "unroll_len". | |
unroll_len=1, | |
), | |
eval=dict(evaluator=dict(eval_freq=50, )), # note: this is the times after which you learns to evaluate | |
other=dict( | |
eps=dict( | |
type='exp', | |
start=0.95, | |
end=0.1, | |
decay=10000, | |
), | |
replay_buffer=dict(replay_buffer_size=20000, ), | |
), | |
), | |
) | |
lunarlander_dqfd_config = EasyDict(lunarlander_dqfd_config) | |
main_config = lunarlander_dqfd_config | |
lunarlander_dqfd_create_config = dict( | |
env=dict( | |
type='lunarlander', | |
import_names=['dizoo.box2d.lunarlander.envs.lunarlander_env'], | |
), | |
env_manager=dict(type='subprocess'), | |
policy=dict(type='dqfd'), | |
) | |
lunarlander_dqfd_create_config = EasyDict(lunarlander_dqfd_create_config) | |
create_config = lunarlander_dqfd_create_config | |
if __name__ == '__main__': | |
# or you can enter `ding -m serial_dqfd -c lunarlander_dqfd_config.py -s 0` | |
# then input ``lunarlander_dqfd_config.py`` upon the instructions. | |
# The reason we need to input the dqfd config is we have to borrow its ``_get_train_sample`` function | |
# in the collector part even though the expert model may be generated from other Q learning algos. | |
from ding.entry.serial_entry_dqfd import serial_pipeline_dqfd | |
from dizoo.box2d.lunarlander.config import lunarlander_dqfd_config, lunarlander_dqfd_create_config | |
expert_main_config = lunarlander_dqfd_config | |
expert_create_config = lunarlander_dqfd_create_config | |
serial_pipeline_dqfd([main_config, create_config], [expert_main_config, expert_create_config], seed=0) | |