Spaces:
Sleeping
Sleeping
from easydict import EasyDict | |
nstep = 1 | |
lunarlander_trex_dqn_config = dict( | |
exp_name='lunarlander_trex_dqn_seed0', | |
env=dict( | |
# Whether to use shared memory. Only effective if "env_manager_type" is 'subprocess' | |
# Env number respectively for collector and evaluator. | |
collector_env_num=8, | |
evaluator_env_num=8, | |
env_id='LunarLander-v2', | |
n_evaluator_episode=8, | |
stop_value=200, | |
), | |
reward_model=dict( | |
type='trex', | |
min_snippet_length=30, | |
max_snippet_length=100, | |
checkpoint_min=1000, | |
checkpoint_max=9000, | |
checkpoint_step=1000, | |
num_snippets=60000, | |
learning_rate=1e-5, | |
update_per_collect=1, | |
# Users should add their own model path here. Model path should lead to a model. | |
# Absolute path is recommended. | |
# In DI-engine, it is ``exp_name/ckpt/ckpt_best.pth.tar``. | |
expert_model_path='model_path_placeholder', | |
# Path where to store the reward model | |
reward_model_path='data_path_placeholder + /lunarlander.params', | |
# Users should add their own data path here. Data path should lead to a file to store data or load the stored data. | |
# Absolute path is recommended. | |
# In DI-engine, it is usually located in ``exp_name`` directory | |
# e.g. 'exp_name/expert_data.pkl' | |
data_path='data_path_placeholder', | |
), | |
policy=dict( | |
# Whether to use cuda for network. | |
cuda=False, | |
model=dict( | |
obs_shape=8, | |
action_shape=4, | |
encoder_hidden_size_list=[512, 64], | |
# Whether to use dueling head. | |
dueling=True, | |
), | |
# Reward's future discount factor, aka. gamma. | |
discount_factor=0.99, | |
# How many steps in td error. | |
nstep=nstep, | |
# learn_mode config | |
learn=dict( | |
update_per_collect=10, | |
batch_size=64, | |
learning_rate=0.001, | |
# Frequency of target network update. | |
target_update_freq=100, | |
), | |
# collect_mode config | |
collect=dict( | |
# You can use either "n_sample" or "n_episode" in collector.collect. | |
# Get "n_sample" samples per collect. | |
n_sample=64, | |
# Cut trajectories into pieces with length "unroll_len". | |
unroll_len=1, | |
), | |
# command_mode config | |
other=dict( | |
# Epsilon greedy with decay. | |
eps=dict( | |
# Decay type. Support ['exp', 'linear']. | |
type='exp', | |
start=0.95, | |
end=0.1, | |
decay=50000, | |
), | |
replay_buffer=dict(replay_buffer_size=100000, ) | |
), | |
), | |
) | |
lunarlander_trex_dqn_config = EasyDict(lunarlander_trex_dqn_config) | |
main_config = lunarlander_trex_dqn_config | |
lunarlander_trex_dqn_create_config = dict( | |
env=dict( | |
type='lunarlander', | |
import_names=['dizoo.box2d.lunarlander.envs.lunarlander_env'], | |
), | |
env_manager=dict(type='subprocess'), | |
policy=dict(type='dqn'), | |
) | |
lunarlander_trex_dqn_create_config = EasyDict(lunarlander_trex_dqn_create_config) | |
create_config = lunarlander_trex_dqn_create_config | |
if __name__ == '__main__': | |
# Users should first run ``lunarlander_dqn_config.py`` to save models (or checkpoints). | |
# Note: Users should check that the checkpoints generated should include iteration_'checkpoint_min'.pth.tar, iteration_'checkpoint_max'.pth.tar with the interval checkpoint_step | |
# where checkpoint_max, checkpoint_min, checkpoint_step are specified above. | |
import argparse | |
import torch | |
from ding.entry import trex_collecting_data | |
from ding.entry import serial_pipeline_trex | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--cfg', type=str, default='please enter abs path for this file') | |
parser.add_argument('--seed', type=int, default=0) | |
parser.add_argument('--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu') | |
args = parser.parse_args() | |
# The function ``trex_collecting_data`` below is to collect episodic data for training the reward model in trex. | |
trex_collecting_data(args) | |
serial_pipeline_trex([main_config, create_config]) | |