Spaces:
Sleeping
Sleeping
import torch | |
from copy import deepcopy | |
from dizoo.classic_control.pendulum.config.pendulum_sac_data_generation_default_config import main_config, create_config | |
from ding.entry import serial_pipeline_offline, collect_demo_data, eval, serial_pipeline | |
def train_cql(args): | |
from dizoo.classic_control.pendulum.config.pendulum_cql_config import main_config, create_config | |
main_config.exp_name = 'cql_sac' | |
main_config.policy.collect.data_path = './sac/expert_demos.hdf5' | |
main_config.policy.collect.data_type = 'hdf5' | |
config = deepcopy([main_config, create_config]) | |
serial_pipeline_offline(config, seed=args.seed) | |
def eval_ckpt(args): | |
main_config.exp_name = 'sac' | |
main_config.policy.learn.learner.load_path = './sac/ckpt/ckpt_best.pth.tar' | |
main_config.policy.learn.learner.hook.load_ckpt_before_run = './sac/ckpt/ckpt_best.pth.tar' | |
state_dict = torch.load(main_config.policy.learn.learner.load_path, map_location='cpu') | |
config = deepcopy([main_config, create_config]) | |
eval(config, seed=args.seed, load_path=main_config.policy.learn.learner.hook.load_ckpt_before_run) | |
def generate(args): | |
main_config.exp_name = 'sac' | |
main_config.policy.learn.learner.load_path = './sac/ckpt/ckpt_best.pth.tar' | |
main_config.policy.collect.save_path = './sac/expert.pkl' | |
main_config.policy.collect.data_type = 'hdf5' | |
config = deepcopy([main_config, create_config]) | |
state_dict = torch.load(main_config.policy.learn.learner.load_path, map_location='cpu') | |
collect_demo_data( | |
config, | |
collect_count=main_config.policy.other.replay_buffer.replay_buffer_size, | |
seed=args.seed, | |
expert_data_path=main_config.policy.collect.save_path, | |
state_dict=state_dict | |
) | |
def train_expert(args): | |
from dizoo.classic_control.pendulum.config.pendulum_sac_config import main_config, create_config | |
config = deepcopy([main_config, create_config]) | |
config[0].exp_name = 'sac' | |
serial_pipeline(config, seed=args.seed) | |
if __name__ == "__main__": | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--seed', '-s', type=int, default=10) | |
args = parser.parse_args() | |
train_expert(args) | |
eval_ckpt(args) | |
generate(args) | |
train_cql(args) | |