Spaces:
Sleeping
Sleeping
import os | |
import gym | |
from tensorboardX import SummaryWriter | |
from torch.optim.lr_scheduler import LambdaLR | |
from ding.config import compile_config | |
from ding.worker import BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, AdvancedReplayBuffer | |
from ding.envs import BaseEnvManager, DingEnvWrapper | |
from ding.policy import DDPGPolicy | |
from ding.model import ContinuousQAC | |
from ding.utils import set_pkg_seed | |
from dizoo.classic_control.pendulum.envs import PendulumEnv | |
from dizoo.classic_control.pendulum.config.pendulum_td3_config import pendulum_td3_config | |
def main(cfg, seed=0): | |
cfg = compile_config( | |
cfg, | |
BaseEnvManager, | |
DDPGPolicy, | |
BaseLearner, | |
SampleSerialCollector, | |
InteractionSerialEvaluator, | |
AdvancedReplayBuffer, | |
save_cfg=True | |
) | |
# Set up envs for collection and evaluation | |
collector_env_num, evaluator_env_num = cfg.env.collector_env_num, cfg.env.evaluator_env_num | |
collector_env = BaseEnvManager( | |
env_fn=[lambda: PendulumEnv(cfg.env) for _ in range(collector_env_num)], cfg=cfg.env.manager | |
) | |
evaluator_env = BaseEnvManager( | |
env_fn=[lambda: PendulumEnv(cfg.env) for _ in range(evaluator_env_num)], cfg=cfg.env.manager | |
) | |
# Set random seed for all package and instance | |
collector_env.seed(seed) | |
evaluator_env.seed(seed, dynamic_seed=False) | |
set_pkg_seed(seed, use_cuda=cfg.policy.cuda) | |
# Set up RL Policy | |
model = ContinuousQAC(**cfg.policy.model) | |
policy = DDPGPolicy(cfg.policy, model=model) | |
# lr_scheduler demo | |
lr_scheduler = LambdaLR( | |
policy.learn_mode.get_attribute('optimizer_actor'), lr_lambda=lambda iters: min(1.0, 0.5 + 0.5 * iters / 1000) | |
) | |
# Set up collection, training and evaluation utilities | |
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) | |
learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) | |
collector = SampleSerialCollector( | |
cfg.policy.collect.collector, collector_env, policy.collect_mode, tb_logger, exp_name=cfg.exp_name | |
) | |
evaluator = InteractionSerialEvaluator( | |
cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name | |
) | |
replay_buffer = AdvancedReplayBuffer(cfg.policy.other.replay_buffer, tb_logger, exp_name=cfg.exp_name) | |
# Training & Evaluation loop | |
while True: | |
# Evaluate at the beginning and with specific frequency | |
if evaluator.should_eval(learner.train_iter): | |
stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) | |
if stop: | |
break | |
# Collect data from environments | |
new_data = collector.collect(train_iter=learner.train_iter) | |
replay_buffer.push(new_data, cur_collector_envstep=collector.envstep) | |
# Train | |
for i in range(cfg.policy.learn.update_per_collect): | |
train_data = replay_buffer.sample(learner.policy.get_attribute('batch_size'), learner.train_iter) | |
if train_data is None: | |
break | |
learner.train(train_data, collector.envstep) | |
lr_scheduler.step() | |
tb_logger.add_scalar('other_iter/scheduled_lr', lr_scheduler.get_last_lr()[0], learner.train_iter) | |
if __name__ == "__main__": | |
main(pendulum_td3_config, seed=0) | |