Spaces:
Sleeping
Sleeping
import copy | |
from typing import List, Union, Optional | |
import gym | |
import numpy as np | |
from easydict import EasyDict | |
from ding.envs.env.base_env import BaseEnv, BaseEnvTimestep | |
from ding.torch_utils import to_ndarray | |
from ding.utils import ENV_REGISTRY | |
class CliffWalkingEnv(BaseEnv): | |
def __init__(self, cfg: dict) -> None: | |
self._cfg = EasyDict( | |
env_id='CliffWalking', | |
render_mode='rgb_array', | |
max_episode_steps=300, # default max trajectory length to truncate possible infinite attempts | |
) | |
self._cfg.update(cfg) | |
self._init_flag = False | |
self._replay_path = None | |
self._observation_space = gym.spaces.Box(low=0, high=1, shape=(48, ), dtype=np.float32) | |
self._env = gym.make( | |
"CliffWalking", render_mode=self._cfg.render_mode, max_episode_steps=self._cfg.max_episode_steps | |
) | |
self._action_space = self._env.action_space | |
self._reward_space = gym.spaces.Box( | |
low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32 | |
) | |
def reset(self) -> np.ndarray: | |
if not self._init_flag: | |
self._env = gym.make( | |
"CliffWalking", render_mode=self._cfg.render_mode, max_episode_steps=self._cfg.max_episode_steps | |
) | |
self._init_flag = True | |
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: | |
dy_seed = self._seed + 100 * np.random.randint(1, 1000) | |
self._env.seed(dy_seed) | |
elif hasattr(self, '_seed'): | |
self._env.seed(self._seed) | |
if self._replay_path is not None: | |
self._env = gym.wrappers.RecordVideo( | |
self._env, | |
video_folder=self._replay_path, | |
episode_trigger=lambda episode_id: True, | |
name_prefix='cliffwalking-{}'.format(id(self)) | |
) | |
obs = self._env.reset() | |
obs_encode = self._encode_obs(obs) | |
self._eval_episode_return = 0. | |
return obs_encode | |
def close(self) -> None: | |
try: | |
self._env.close() | |
del self._env | |
except: | |
pass | |
def seed(self, seed: int, dynamic_seed: bool = True) -> None: | |
self._seed = seed | |
self._dynamic_seed = dynamic_seed | |
np.random.seed(seed) | |
def step(self, action: Union[int, np.ndarray]) -> BaseEnvTimestep: | |
if isinstance(action, np.ndarray): | |
if action.shape == (1, ): | |
action = action.squeeze() # 0-dim array | |
action = action.item() | |
obs, reward, done, info = self._env.step(action) | |
obs_encode = self._encode_obs(obs) | |
self._eval_episode_return += reward | |
reward = to_ndarray([reward], dtype=np.float32) | |
if done: | |
info['eval_episode_return'] = self._eval_episode_return | |
return BaseEnvTimestep(obs_encode, reward, done, info) | |
def enable_save_replay(self, replay_path: Optional[str] = None) -> None: | |
if replay_path is None: | |
replay_path = './video' | |
self._replay_path = replay_path | |
def random_action(self) -> np.ndarray: | |
random_action = self.action_space.sample() | |
if isinstance(random_action, int): | |
random_action = to_ndarray([random_action], dtype=np.int64) | |
return random_action | |
def _encode_obs(self, obs) -> np.ndarray: | |
onehot = np.zeros(48, dtype=np.float32) | |
onehot[int(obs)] = 1 | |
return onehot | |
def observation_space(self) -> gym.spaces.Space: | |
return self._observation_space | |
def action_space(self) -> gym.spaces.Space: | |
return self._action_space | |
def reward_space(self) -> gym.spaces.Space: | |
return self._reward_space | |
def __repr__(self) -> str: | |
return "DI-engine CliffWalking Env" | |