Spaces:
Sleeping
Sleeping
from typing import Any, Union, List | |
import copy | |
import numpy as np | |
import gym | |
import competitive_rl | |
from ding.envs import BaseEnv, BaseEnvTimestep, BaseEnvInfo, update_shape | |
from ding.envs.common.env_element import EnvElement, EnvElementInfo | |
from ding.envs.common.common_function import affine_transform | |
from ding.torch_utils import to_ndarray, to_list | |
from .competitive_rl_env_wrapper import BuiltinOpponentWrapper, wrap_env | |
from ding.utils import ENV_REGISTRY | |
competitive_rl.register_competitive_envs() | |
""" | |
The observation spaces: | |
cPong-v0: Box(210, 160, 3) | |
cPongDouble-v0: Tuple(Box(210, 160, 3), Box(210, 160, 3)) | |
cCarRacing-v0: Box(96, 96, 1) | |
cCarRacingDouble-v0: Box(96, 96, 1) | |
The action spaces: | |
cPong-v0: Discrete(3) | |
cPongDouble-v0: Tuple(Discrete(3), Discrete(3)) | |
cCarRacing-v0: Box(2,) | |
cCarRacingDouble-v0: Dict(0:Box(2,), 1:Box(2,)) | |
cPongTournament-v0 | |
""" | |
COMPETITIVERL_INFO_DICT = { | |
'cPongDouble-v0': BaseEnvInfo( | |
agent_num=1, | |
obs_space=EnvElementInfo( | |
shape=(210, 160, 3), | |
# shape=(4, 84, 84), | |
value={ | |
'min': 0, | |
'max': 255, | |
'dtype': np.float32 | |
}, | |
), | |
act_space=EnvElementInfo( | |
shape=(1, ), # different with https://github.com/cuhkrlcourse/competitive-rl#usage | |
value={ | |
'min': 0, | |
'max': 3, | |
'dtype': np.float32 | |
}, | |
), | |
rew_space=EnvElementInfo( | |
shape=(1, ), | |
value={ | |
'min': np.float32("-inf"), | |
'max': np.float32("inf"), | |
'dtype': np.float32 | |
}, | |
), | |
use_wrappers=None, | |
), | |
} | |
class CompetitiveRlEnv(BaseEnv): | |
def __init__(self, cfg: dict) -> None: | |
self._cfg = cfg | |
self._env_id = self._cfg.env_id | |
# opponent_type is used to control builtin opponent agent, which is useful in evaluator. | |
is_evaluator = self._cfg.get("is_evaluator", False) | |
opponent_type = None | |
if is_evaluator: | |
opponent_type = self._cfg.get("opponent_type", None) | |
self._builtin_wrap = self._env_id == "cPongDouble-v0" and is_evaluator and opponent_type == "builtin" | |
self._opponent = self._cfg.get('eval_opponent', 'RULE_BASED') | |
self._init_flag = False | |
def reset(self) -> np.ndarray: | |
if not self._init_flag: | |
self._env = self._make_env(only_info=False) | |
self._init_flag = True | |
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: | |
np_seed = 100 * np.random.randint(1, 1000) | |
self._env.seed(self._seed + np_seed) | |
elif hasattr(self, '_seed'): | |
self._env.seed(self._seed) | |
obs = self._env.reset() | |
obs = to_ndarray(obs) | |
obs = self.process_obs(obs) # process | |
if self._builtin_wrap: | |
self._eval_episode_return = np.array([0.]) | |
else: | |
self._eval_episode_return = np.array([0., 0.]) | |
return obs | |
def close(self) -> None: | |
if self._init_flag: | |
self._env.close() | |
self._init_flag = False | |
def seed(self, seed: int, dynamic_seed: bool = True) -> None: | |
self._seed = seed | |
self._dynamic_seed = dynamic_seed | |
np.random.seed(self._seed) | |
def step(self, action: Union[np.ndarray, list]) -> BaseEnvTimestep: | |
action = to_ndarray(action) | |
action = self.process_action(action) # process | |
obs, rew, done, info = self._env.step(action) | |
if not isinstance(rew, tuple): | |
rew = [rew] | |
rew = np.array(rew) | |
self._eval_episode_return += rew | |
obs = to_ndarray(obs) | |
obs = self.process_obs(obs) # process | |
if done: | |
info['eval_episode_return'] = self._eval_episode_return | |
return BaseEnvTimestep(obs, rew, done, info) | |
def info(self) -> BaseEnvInfo: | |
if self._env_id in COMPETITIVERL_INFO_DICT: | |
info = copy.deepcopy(COMPETITIVERL_INFO_DICT[self._env_id]) | |
info.use_wrappers = self._make_env(only_info=True) | |
obs_shape, act_shape, rew_shape = update_shape( | |
info.obs_space.shape, info.act_space.shape, info.rew_space.shape, info.use_wrappers.split('\n') | |
) | |
info.obs_space.shape = obs_shape | |
info.act_space.shape = act_shape | |
info.rew_space.shape = rew_shape | |
if not self._builtin_wrap: | |
info.obs_space.shape = (2, ) + info.obs_space.shape | |
info.act_space.shape = (2, ) | |
info.rew_space.shape = (2, ) | |
return info | |
else: | |
raise NotImplementedError('{} not found in COMPETITIVERL_INFO_DICT [{}]'\ | |
.format(self._env_id, COMPETITIVERL_INFO_DICT.keys())) | |
def _make_env(self, only_info=False): | |
return wrap_env(self._env_id, self._builtin_wrap, self._opponent, only_info=only_info) | |
def __repr__(self) -> str: | |
return "DI-engine Competitve RL Env({})".format(self._cfg.env_id) | |
def create_collector_env_cfg(cfg: dict) -> List[dict]: | |
collector_cfg = copy.deepcopy(cfg) | |
collector_env_num = collector_cfg.pop('collector_env_num', 1) | |
collector_cfg.is_evaluator = False | |
return [collector_cfg for _ in range(collector_env_num)] | |
def create_evaluator_env_cfg(cfg: dict) -> List[dict]: | |
evaluator_cfg = copy.deepcopy(cfg) | |
evaluator_env_num = evaluator_cfg.pop('evaluator_env_num', 1) | |
evaluator_cfg.is_evaluator = True | |
return [evaluator_cfg for _ in range(evaluator_env_num)] | |
def process_action(self, action: np.ndarray) -> Union[tuple, dict, np.ndarray]: | |
# If in double agent env, transfrom action passed in from outside to tuple or dict type. | |
if self._env_id == "cPongDouble-v0" and not self._builtin_wrap: | |
return (action[0].squeeze(), action[1].squeeze()) | |
elif self._env_id == "cCarRacingDouble-v0": | |
return {0: action[0].squeeze(), 1: action[1].squeeze()} | |
else: | |
return action.squeeze() | |
def process_obs(self, obs: Union[tuple, np.ndarray]) -> Union[tuple, np.ndarray]: | |
# Copy observation for car racing double agent env, in case to be in alignment with pong double agent env. | |
if self._env_id == "cCarRacingDouble-v0": | |
obs = np.stack([obs, copy.deepcopy(obs)]) | |
return obs | |