Spaces:
Sleeping
Sleeping
import pytest | |
import numpy as np | |
from easydict import EasyDict | |
from dizoo.dmc2gym.envs import DMC2GymEnv | |
from torch import float32 | |
class TestDMC2GymEnv: | |
def test_naive(self): | |
env = DMC2GymEnv(EasyDict({ | |
"domain_name": "cartpole", | |
"task_name": "balance", | |
"frame_skip": 2, | |
})) | |
env.seed(314, dynamic_seed=False) | |
assert env._seed == 314 | |
obs = env.reset() | |
assert obs.shape == ( | |
3, | |
100, | |
100, | |
) | |
for _ in range(5): | |
env.reset() | |
np.random.seed(314) | |
print('=' * 60) | |
for i in range(10): | |
# Both ``env.random_action()``, and utilizing ``np.random`` as well as action space, | |
# can generate legal random action. | |
if i < 5: | |
random_action = np.array(env.action_space.sample(), dtype=np.float32) | |
else: | |
random_action = env.random_action() | |
timestep = env.step(random_action) | |
print(timestep) | |
assert isinstance(timestep.obs, np.ndarray) | |
assert isinstance(timestep.done, bool) | |
assert timestep.obs.shape == ( | |
3, | |
100, | |
100, | |
) | |
assert timestep.reward.shape == (1, ) | |
assert timestep.reward >= env.reward_space.low | |
assert timestep.reward <= env.reward_space.high | |
print(env.observation_space, env.action_space, env.reward_space) | |
env.close() | |