Spaces:
Sleeping
Sleeping
import pytest | |
import numpy as np | |
from easydict import EasyDict | |
from dizoo.gym_anytrading.envs import StocksEnv | |
class TestStocksEnv: | |
def test_naive(self): | |
env = StocksEnv(EasyDict({"env_id": 'stocks-v0', "eps_length": 300,\ | |
"window_size": 20, "train_range": None, "test_range": None, "stocks_data_filename": 'STOCKS_GOOGL'})) | |
env.seed(314, dynamic_seed=False) | |
assert env._seed == 314 | |
obs = env.reset() | |
assert obs.shape == (62, ) | |
for _ in range(5): | |
env.reset() | |
np.random.seed(314) | |
print('=' * 60) | |
for i in range(10): | |
# Both ``env.random_action()``, and utilizing ``np.random`` as well as action space, | |
# can generate legal random action. | |
if i < 5: | |
random_action = np.array([env.action_space.sample()]) | |
else: | |
random_action = env.random_action() | |
timestep = env.step(random_action) | |
print(timestep) | |
assert isinstance(timestep.obs, np.ndarray) | |
assert isinstance(timestep.done, bool) | |
assert timestep.obs.shape == (62, ) | |
assert timestep.reward.shape == (1, ) | |
assert timestep.reward >= env.reward_space.low | |
assert timestep.reward <= env.reward_space.high | |
print(env.observation_space, env.action_space, env.reward_space) | |
env.close() | |