Spaces:
Sleeping
Sleeping
import numpy as np | |
import pytest | |
from dizoo.gym_hybrid.envs import GymHybridEnv | |
from easydict import EasyDict | |
class TestGymHybridEnv: | |
def test_naive(self): | |
env = GymHybridEnv( | |
EasyDict( | |
{ | |
'env_id': 'Moving-v0', | |
'act_scale': False, | |
'save_replay_gif': False, | |
'replay_path_gif': None, | |
'replay_path': None | |
} | |
) | |
) | |
env.enable_save_replay('./video') | |
env.seed(314, dynamic_seed=False) | |
assert env._seed == 314 | |
obs = env.reset() | |
assert obs.shape == (10, ) | |
for i in range(200): | |
random_action = env.random_action() | |
print('random_action', random_action) | |
timestep = env.step(random_action) | |
assert isinstance(timestep.obs, np.ndarray) | |
assert isinstance(timestep.done, bool) | |
assert timestep.obs.shape == (10, ) | |
assert timestep.reward.shape == (1, ) | |
assert timestep.info['action_args_mask'].shape == (3, 2) | |
if timestep.done: | |
print('reset env') | |
env.reset() | |
print(env.observation_space, env.action_space, env.reward_space) | |
env.close() | |