Spaces:
Sleeping
Sleeping
import math | |
import torch | |
import torch.nn as nn | |
from torch.optim import SGD | |
from torch.optim.lr_scheduler import LambdaLR | |
from ding.policy import Policy | |
from ding.model import model_wrap | |
from ding.torch_utils import to_device | |
from ding.utils import EasyTimer | |
class ImageClassificationPolicy(Policy): | |
config = dict( | |
type='image_classification', | |
on_policy=False, | |
) | |
def _init_learn(self): | |
self._optimizer = SGD( | |
self._model.parameters(), | |
lr=self._cfg.learn.learning_rate, | |
weight_decay=self._cfg.learn.weight_decay, | |
momentum=0.9 | |
) | |
self._timer = EasyTimer(cuda=True) | |
def lr_scheduler_fn(epoch): | |
if epoch <= self._cfg.learn.warmup_epoch: | |
return self._cfg.learn.warmup_lr / self._cfg.learn.learning_rate | |
else: | |
ratio = epoch // self._cfg.learn.decay_epoch | |
return math.pow(self._cfg.learn.decay_rate, ratio) | |
self._lr_scheduler = LambdaLR(self._optimizer, lr_scheduler_fn) | |
self._lr_scheduler.step() | |
self._learn_model = model_wrap(self._model, 'base') | |
self._learn_model.reset() | |
self._ce_loss = nn.CrossEntropyLoss() | |
def _forward_learn(self, data): | |
if self._cuda: | |
data = to_device(data, self._device) | |
self._learn_model.train() | |
with self._timer: | |
img, target = data | |
logit = self._learn_model.forward(img) | |
loss = self._ce_loss(logit, target) | |
forward_time = self._timer.value | |
with self._timer: | |
self._optimizer.zero_grad() | |
loss.backward() | |
backward_time = self._timer.value | |
with self._timer: | |
if self._cfg.multi_gpu: | |
self.sync_gradients(self._learn_model) | |
sync_time = self._timer.value | |
self._optimizer.step() | |
cur_lr = [param_group['lr'] for param_group in self._optimizer.param_groups] | |
cur_lr = sum(cur_lr) / len(cur_lr) | |
return { | |
'cur_lr': cur_lr, | |
'total_loss': loss.item(), | |
'forward_time': forward_time, | |
'backward_time': backward_time, | |
'sync_time': sync_time, | |
} | |
def _monitor_vars_learn(self): | |
return ['cur_lr', 'total_loss', 'forward_time', 'backward_time', 'sync_time'] | |
def _init_eval(self): | |
self._eval_model = model_wrap(self._model, 'base') | |
def _forward_eval(self, data): | |
if self._cuda: | |
data = to_device(data, self._device) | |
self._eval_model.eval() | |
with torch.no_grad(): | |
output = self._eval_model.forward(data) | |
if self._cuda: | |
output = to_device(output, 'cpu') | |
return output | |
def _init_collect(self): | |
pass | |
def _forward_collect(self, data): | |
pass | |
def _process_transition(self): | |
pass | |
def _get_train_sample(self): | |
pass | |