Spaces:
Sleeping
Sleeping
from easydict import EasyDict | |
collector_env_num = 8 | |
evaluator_env_num = 5 | |
minigrid_icm_onppo_config = dict( | |
exp_name='minigrid_AKTDT-7x7_icm_onppo_seed0', | |
env=dict( | |
collector_env_num=collector_env_num, | |
evaluator_env_num=evaluator_env_num, | |
n_evaluator_episode=evaluator_env_num, | |
# minigrid env id: 'MiniGrid-Empty-8x8-v0', 'MiniGrid-FourRooms-v0','MiniGrid-DoorKey-16x16-v0','MiniGrid-AKTDT-7x7-1-v0' | |
env_id='MiniGrid-NoisyTV-v0', | |
max_step=100, | |
stop_value=12, # run fixed env_steps for MiniGrid-AKTDT-7x7-1-v0 | |
# stop_value=0.96, | |
), | |
reward_model=dict( | |
intrinsic_reward_type='add', | |
# intrinsic_reward_weight means the relative weight of ICM intrinsic_reward. | |
# Specifically for sparse reward env MiniGrid, in this env, | |
# if reach goal, the agent get reward ~1, otherwise 0, | |
# We could set the intrinsic_reward_weight approximately equal to the inverse of max_episode_steps. | |
# Please refer to rnd_reward_model for details. | |
intrinsic_reward_weight=0.003, # 1/300 | |
learning_rate=3e-4, | |
obs_shape=2835, # 2715 in MiniGrid-AKTDT-7x7-1-v0 env | |
batch_size=320, | |
update_per_collect=50, | |
clear_buffer_per_iters=int(1e3), | |
extrinsic_reward_norm=True, | |
extrinsic_reward_norm_max=1, | |
), | |
policy=dict( | |
cuda=True, | |
recompute_adv=True, | |
action_space='discrete', | |
model=dict( | |
obs_shape=2835, # 2715 in MiniGrid-AKTDT-7x7-1-v0 env | |
action_shape=7, | |
action_space='discrete', | |
encoder_hidden_size_list=[256, 128, 64, 64], | |
critic_head_hidden_size=64, | |
actor_head_hidden_size=64, | |
), | |
learn=dict( | |
epoch_per_collect=10, | |
update_per_collect=1, | |
batch_size=320, | |
learning_rate=3e-4, | |
value_weight=0.5, | |
entropy_weight=0.001, | |
clip_ratio=0.2, | |
adv_norm=True, | |
value_norm=True, | |
), | |
collect=dict( | |
n_sample=3200, | |
unroll_len=1, | |
discount_factor=0.99, | |
gae_lambda=0.95, | |
), | |
eval=dict(evaluator=dict(eval_freq=1000, )), | |
), | |
) | |
minigrid_icm_onppo_config = EasyDict(minigrid_icm_onppo_config) | |
main_config = minigrid_icm_onppo_config | |
minigrid_icm_onppo_create_config = dict( | |
env=dict( | |
type='minigrid', | |
import_names=['dizoo.minigrid.envs.minigrid_env'], | |
), | |
env_manager=dict(type='subprocess'), | |
policy=dict(type='ppo'), | |
reward_model=dict(type='icm'), | |
) | |
minigrid_icm_onppo_create_config = EasyDict(minigrid_icm_onppo_create_config) | |
create_config = minigrid_icm_onppo_create_config | |
if __name__ == "__main__": | |
# or you can enter `ding -m serial -c minigrid_icm_onppo_config.py -s 0` | |
from ding.entry import serial_pipeline_reward_model_onpolicy | |
serial_pipeline_reward_model_onpolicy([main_config, create_config], seed=0, max_env_step=int(10e6)) |